Geometric Origami
   HOME

TheInfoList



OR:

''Geometric Origami'' is a book on the
mathematics of paper folding The discipline of origami or paper folding has received a considerable amount of mathematical study. Fields of interest include a given paper model's flat-foldability (whether the model can be flattened without damaging it), and the use of paper ...
, focusing on the ability to simulate and extend classical
straightedge and compass construction In geometry, straightedge-and-compass construction – also known as ruler-and-compass construction, Euclidean construction, or classical construction – is the construction of lengths, angles, and other geometric figures using only an ideali ...
s using
origami ) is the Japanese art of paper folding. In modern usage, the word "origami" is often used as an inclusive term for all folding practices, regardless of their culture of origin. The goal is to transform a flat square sheet of paper into a ...
. It was written by Austrian mathematician and published by Arbelos Publishing (Shipley, UK) in 2008. The Basic Library List Committee of the
Mathematical Association of America The Mathematical Association of America (MAA) is a professional society that focuses on mathematics accessible at the undergraduate level. Members include university A university () is an educational institution, institution of tertiary edu ...
has suggested its inclusion in undergraduate mathematics libraries.


Topics

The book is divided into two main parts. The first part is more theoretical. It outlines the
Huzita–Hatori axioms The Huzita–Justin axioms or Huzita–Hatori axioms are a set of rules related to the mathematical principles of origami, describing the operations that can be made when folding a piece of paper. The axioms assume that the operations are complete ...
for mathematical origami, and proves that they are capable of simulating any
straightedge and compass construction In geometry, straightedge-and-compass construction – also known as ruler-and-compass construction, Euclidean construction, or classical construction – is the construction of lengths, angles, and other geometric figures using only an ideali ...
. It goes on to show that, in this mathematical model, origami is strictly more powerful than straightedge and compass: with origami, it is possible to solve any
cubic equation In algebra, a cubic equation in one variable is an equation of the form ax^3+bx^2+cx+d=0 in which is not zero. The solutions of this equation are called roots of the cubic function defined by the left-hand side of the equation. If all of th ...
or
quartic equation In mathematics, a quartic equation is one which can be expressed as a ''quartic function'' equaling zero. The general form of a quartic equation is :ax^4+bx^3+cx^2+dx+e=0 \, where ''a'' ≠ 0. The quartic is the highest order polynom ...
. In particular, origami methods can be used to trisect angles, and for
doubling the cube Doubling the cube, also known as the Delian problem, is an ancient geometry, geometric problem. Given the Edge (geometry), edge of a cube, the problem requires the construction of the edge of a second cube whose volume is double that of the first ...
, two problems that have been proven to have no exact solution using only straightedge and compass. The second part of the book focuses on folding instructions for constructing
regular polygon In Euclidean geometry, a regular polygon is a polygon that is Equiangular polygon, direct equiangular (all angles are equal in measure) and Equilateral polygon, equilateral (all sides have the same length). Regular polygons may be either ''convex ...
s using origami, and on finding the largest copy of a given regular polygon that can be constructed within a given square sheet of origami paper. With straightedge and compass, it is only possible to exactly construct regular for which n is a product of a
power of two A power of two is a number of the form where is an integer, that is, the result of exponentiation with number 2, two as the Base (exponentiation), base and integer  as the exponent. In the fast-growing hierarchy, is exactly equal to f_1^ ...
with distinct
Fermat prime In mathematics, a Fermat number, named after Pierre de Fermat (1601–1665), the first known to have studied them, is a positive integer of the form:F_ = 2^ + 1, where ''n'' is a non-negative integer. The first few Fermat numbers are: 3, 5, ...
s (powers of two plus one): this allows n to be 3, 5, 6, 8, 10, 12, etc. These are called the
constructible polygon In mathematics, a constructible polygon is a regular polygon that can be Compass and straightedge constructions, constructed with compass and straightedge. For example, a regular pentagon is constructible with compass and straightedge while a regu ...
s. With a construction system that can trisect angles, such as mathematical origami, more numbers of sides are possible, using
Pierpont prime In number theory, a Pierpont prime is a prime number of the form 2^u\cdot 3^v + 1\, for some nonnegative integers and . That is, they are the prime numbers for which is 3-smooth. They are named after the mathematician James Pierpont, who us ...
s in place of Fermat primes, including for n equal to 7, 13, 14, 17, 19, etc. ''Geometric Origami'' provides explicit folding instructions for 15 different regular polygons, including those with 3, 5, 6, 7, 8, 9, 10, 12, 13, 17, and 19 sides. Additionally, it discusses approximate constructions for polygons that cannot be constructed exactly in this way.


Audience and reception

This book is quite technical, aimed more at mathematicians than at amateur origami enthusiasts looking for folding instructions for origami artworks. However, it may be of interest to origami designers, looking for methods to incorporate folding patterns for regular polygons into their designs. Origamist David Raynor suggests that its methods could also be useful in constructing templates from which to cut out clean unfolded pieces of paper in the shape of the regular polygons that it discusses, for use in origami models that use these polygons as a starting shape instead of the traditional square paper. ''Geometric Origami'' may also be useful as teaching material for university-level geometry and
abstract algebra In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures, which are set (mathematics), sets with specific operation (mathematics), operations acting on their elements. Algebraic structur ...
, or for undergraduate research projects extending those subjects, although reviewer Mary Fortune cautions that "there is much preliminary material to be covered" before a student would be ready for such a project. Reviewer Georg Gunther summarizes the book as "a delightful addition to a wonderful corner of mathematics where art and geometry meet", recommending it as a reference for "anyone with a working knowledge of elementary geometry, algebra, and the geometry of complex numbers".


References

Mathematics books 2008 non-fiction books Paper folding {{Mathematics of paper folding