HOME

TheInfoList



OR:

In
astronomy Astronomy is a natural science that studies celestial objects and the phenomena that occur in the cosmos. It uses mathematics, physics, and chemistry in order to explain their origin and their overall evolution. Objects of interest includ ...
, the geometric albedo of a
celestial body An astronomical object, celestial object, stellar object or heavenly body is a naturally occurring physical entity, association, or structure that exists within the observable universe. In astronomy, the terms ''object'' and ''body'' are of ...
is the ratio of its actual brightness as seen from the light source (i.e. at zero phase angle) to that of an ''idealized'' flat, fully reflecting, diffusively scattering ( Lambertian) disk with the same cross-section. (This phase angle refers to the direction of the light paths and is not a phase angle in its normal meaning in
optics Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of optical instruments, instruments that use or Photodetector, detect it. Optics usually describes t ...
or
electronics Electronics is a scientific and engineering discipline that studies and applies the principles of physics to design, create, and operate devices that manipulate electrons and other Electric charge, electrically charged particles. It is a subfield ...
.) Diffuse scattering implies that radiation is reflected isotropically with no memory of the location of the incident light source. Zero phase angle corresponds to looking along the direction of illumination. For Earth-bound observers, this occurs when the body in question is at opposition and on the
ecliptic The ecliptic or ecliptic plane is the orbital plane of Earth's orbit, Earth around the Sun. It was a central concept in a number of ancient sciences, providing the framework for key measurements in astronomy, astrology and calendar-making. Fr ...
. The visual geometric albedo refers to the geometric albedo quantity when accounting for only
electromagnetic radiation In physics, electromagnetic radiation (EMR) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency or its inverse, wavelength ...
in the
visible spectrum The visible spectrum is the spectral band, band of the electromagnetic spectrum that is visual perception, visible to the human eye. Electromagnetic radiation in this range of wavelengths is called ''visible light'' (or simply light). The optica ...
.


Airless bodies

The surface materials ( regoliths) of airless bodies (in fact, the majority of bodies in the
Solar System The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Sola ...
) are strongly non-Lambertian and exhibit the opposition effect, which is a strong tendency to reflect light straight back to its source, rather than scattering light diffusely. The geometric albedo of these bodies can be difficult to determine because of this, as their reflectance is strongly peaked for a small range of phase angles near zero.See for exampl
this discussion of Lunar albedo
by Jeff Medkeff.
The strength of this peak differs markedly between bodies, and can only be found by making measurements at small enough phase angles. Such measurements are usually difficult due to the necessary precise placement of the observer very close to the incident light. For example, the Moon is never seen from the Earth at exactly zero phase angle, because then it is being eclipsed. Other Solar System bodies are not in general seen at exactly zero phase angle even at opposition, unless they are also simultaneously located at the ascending or descending node of their orbit, and hence lie on the
ecliptic The ecliptic or ecliptic plane is the orbital plane of Earth's orbit, Earth around the Sun. It was a central concept in a number of ancient sciences, providing the framework for key measurements in astronomy, astrology and calendar-making. Fr ...
. In practice, measurements at small nonzero phase angles are used to derive the parameters which characterize the directional reflectance properties for the body ( Hapke parameters). The reflectance function described by these can then be extrapolated to zero phase angle to obtain an estimate of the geometric albedo. For very bright, solid, airless objects such as
Saturn Saturn is the sixth planet from the Sun and the second largest in the Solar System, after Jupiter. It is a gas giant, with an average radius of about 9 times that of Earth. It has an eighth the average density of Earth, but is over 95 tim ...
's moons Enceladus and Tethys, whose total reflectance (
Bond albedo The Bond albedo (also called spheric albedo, planetary albedo, and bolometric albedo), named after the American astronomer George Phillips Bond (1825–1865), who originally proposed it, is the fraction of power in the total electromagnetic radi ...
) is close to one, a strong opposition effect combines with the high Bond albedo to give them a geometric albedo above unity (1.4 in the case of Enceladus). Light is preferentially reflected straight back to its source even at low angle of incidence such as on the limb or from a slope, whereas a Lambertian surface would scatter the radiation much more broadly. A geometric albedo above unity means that the intensity of light scattered back per unit solid angle towards the source is higher than is possible for any Lambertian surface.


Stars

Stars shine intrinsically, but they can also reflect light. In a close binary star system polarimetry can be used to measure the light reflected from one star off another (and vice versa) and therefore also the geometric albedos of the two stars. This task has been accomplished for the two components of the Spica system, with the geometric albedo of Spica A and B being measured as 0.0361 and 0.0136 respectively. The geometric albedos of stars are in general small, for the Sun a value of 0.001 is expected, but for hotter or lower-gravity (i.e. giant) stars the amount of reflected light is expected to be several times that of the stars in the Spica system.


Equivalent definitions

For the hypothetical case of a plane surface, the geometric albedo is the albedo of the surface when the illumination is provided by a beam of radiation that comes in
perpendicular In geometry, two geometric objects are perpendicular if they intersect at right angles, i.e. at an angle of 90 degrees or π/2 radians. The condition of perpendicularity may be represented graphically using the '' perpendicular symbol'', � ...
to the surface.


Examples

The geometric albedo may be greater or smaller than the Bond albedo, depending on surface and atmospheric properties of the body in question. Some examples:Albedo of the Earth
/ref>


See also

* Albedo * Anisotropy *
Bond albedo The Bond albedo (also called spheric albedo, planetary albedo, and bolometric albedo), named after the American astronomer George Phillips Bond (1825–1865), who originally proposed it, is the fraction of power in the total electromagnetic radi ...
* Lambertian reflectance


References


Further reading


NASA JPL glossary
* K.P. Seidelmann, Ed. (1992) ''Explanatory Supplement to the Astronomical Almanac'', University Science Books, Mill Valley, California. {{DEFAULTSORT:Geometric Albedo Observational astronomy Radiometry Scattering, absorption and radiative transfer (optics)