HOME

TheInfoList



OR:

A geomagnetic storm, also known as a magnetic storm, is a temporary disturbance of the
Earth's magnetosphere In astronomy and planetary science, a magnetosphere is a region of space surrounding an astronomical object in which charged particles are affected by that object's magnetic field. It is created by a celestial body with an active interior Dynamo ...
that is driven by interactions between the magnetosphere and large-scale transient plasma and
magnetic field A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
structures that originate on or near the
Sun The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light a ...
. The structures that produce geomagnetic storms include interplanetary
coronal mass ejections A coronal mass ejection (CME) is a significant ejection of plasma mass from the Sun's corona into the heliosphere. CMEs are often associated with solar flares and other forms of solar activity, but a broadly accepted theoretical understanding ...
(CME) and corotating interaction regions (CIR). The former often originate from solar active regions, while the latter originate at the boundary between high- and low-speed streams of
solar wind The solar wind is a stream of charged particles released from the Sun's outermost atmospheric layer, the Stellar corona, corona. This Plasma (physics), plasma mostly consists of electrons, protons and alpha particles with kinetic energy betwee ...
. The frequency of geomagnetic storms increases and decreases with the sunspot cycle. During solar maxima, geomagnetic storms occur more often, with the majority driven by CMEs. When these structures reach Earth, the increase in the solar wind pressure initially compresses the magnetosphere. The solar wind's magnetic field interacts with the Earth's magnetic field and transfers an increased energy into the magnetosphere. Both interactions cause an increase in plasma movement through the magnetosphere (driven by increased electric fields inside the magnetosphere) and an increase in electric current in the magnetosphere and
ionosphere The ionosphere () is the ionized part of the upper atmosphere of Earth, from about to above sea level, a region that includes the thermosphere and parts of the mesosphere and exosphere. The ionosphere is ionized by solar radiation. It plays ...
. During the main phase of a geomagnetic storm, electric current in the magnetosphere creates a magnetic force that pushes out the boundary between the magnetosphere and the solar wind. Several space weather phenomena tend to be associated with geomagnetic storms. These include solar energetic particle (SEP) events, geomagnetically induced currents (GIC), ionospheric storms and disturbances that cause radio and radar scintillation, disruption of navigation by magnetic compass and auroral displays at much lower magnetic latitudes than normal. The largest recorded geomagnetic storm, the Carrington Event in September 1859, took down parts of the recently created US telegraph network, starting fires and electrically shocking telegraph operators. In 1989, a geomagnetic storm energized ground induced currents that disrupted electric power distribution throughout most of
Quebec Quebec is Canada's List of Canadian provinces and territories by area, largest province by area. Located in Central Canada, the province shares borders with the provinces of Ontario to the west, Newfoundland and Labrador to the northeast, ...
and caused aurorae as far south as
Texas Texas ( , ; or ) is the most populous U.S. state, state in the South Central United States, South Central region of the United States. It borders Louisiana to the east, Arkansas to the northeast, Oklahoma to the north, New Mexico to the we ...
.


Definition

A geomagnetic storm is definedGonzalez, W. D., J. A. Joselyn, Y. Kamide, H. W. Kroehl, G. Rostoker, B. T. Tsurutani, and V. M. Vasyliunas (1994), What is a Geomagnetic Storm?, J. Geophys. Res., 99(A4), 5771–5792. by changes in the Dst (disturbance – storm time) index. The Dst index estimates the globally averaged change of the horizontal component of the Earth's magnetic field at the magnetic equator based on measurements from a few magnetometer stations. Dst is computed once per hour and reported in near-real-time. During quiet times, Dst is between +20 and −20 nano- Tesla (nT). A geomagnetic storm has three phases: initial, main and recovery. The initial phase is characterized by Dst (or its one-minute component SYM-H) increasing by 20 to 50 nT in tens of minutes. The initial phase is also referred to as a storm sudden commencement (SSC). However, not all geomagnetic storms have an initial phase and not all sudden increases in Dst or SYM-H are followed by a geomagnetic storm. The main phase of a geomagnetic storm is defined by Dst decreasing to less than −50 nT. The selection of −50 nT to define a storm is somewhat arbitrary. The minimum value during a storm will be between −50 and approximately −600 nT. The duration of the main phase is typically 2–8 hours. The recovery phase is when Dst changes from its minimum value to its quiet time value. The recovery phase may last as short as 8 hours or as long as 7 days. The size of a geomagnetic storm is classified as moderate (−50 nT > minimum of Dst > −100 nT), intense (−100 nT > minimum Dst > −250 nT) or super-storm (minimum of Dst < −250 nT).


Measuring intensity

Geomagnetic storm intensity is reported in several different ways, including: * K-index * A-index * The G-scale used by the U.S.
National Oceanic and Atmospheric Administration The National Oceanic and Atmospheric Administration (NOAA ) is an American scientific and regulatory agency charged with Weather forecasting, forecasting weather, monitoring oceanic and atmospheric conditions, Hydrography, charting the seas, ...
, which rates the storm from G1 to G5 (i.e. G1, G2, G3, G4, G5 in order), where G1 is the weakest storm classification (corresponding to a Kp value of 5), and G5 is the strongest (corresponding to a Kp value of 9).


History of the theory

In 1930, Sydney Chapman and Vincenzo C. A. Ferraro wrote an article, ''A New Theory of Magnetic Storms'', that sought to explain the phenomenon. They argued that whenever the
Sun The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light a ...
emits a
solar flare A solar flare is a relatively intense, localized emission of electromagnetic radiation in the Sun's atmosphere. Flares occur in active regions and are often, but not always, accompanied by coronal mass ejections, solar particle events, and ot ...
it also emits a plasma cloud, now known as a
coronal mass ejection A coronal mass ejection (CME) is a significant ejection of plasma mass from the Sun's corona into the heliosphere. CMEs are often associated with solar flares and other forms of solar activity, but a broadly accepted theoretical understandin ...
. They postulated that this plasma travels at a velocity such that it reaches Earth within 113 days, though we now know this journey takes 1 to 5 days. They wrote that the cloud then compresses the
Earth's magnetic field Earth's magnetic field, also known as the geomagnetic field, is the magnetic field that extends from structure of Earth, Earth's interior out into space, where it interacts with the solar wind, a stream of charged particles emanating from ...
and thus increases this field at the Earth's surface. Chapman and Ferraro's work drew on that of, among others,
Kristian Birkeland Kristian Olaf Bernhard Birkeland (born 13 December 1867 – 15 June 1917) was a Norway, Norwegian space physics, space physicist, inventor, and professor of physics at the University of Oslo, Royal Fredriks University in Oslo. He is best remembe ...
, who had used recently discovered
cathode-ray tube A cathode-ray tube (CRT) is a vacuum tube containing one or more electron guns, which emit electron beams that are manipulated to display images on a phosphorescent screen. The images may represent electrical waveforms on an oscilloscope, a ...
s to show that the rays were deflected towards the
poles Pole or poles may refer to: People *Poles (people), another term for Polish people, from the country of Poland * Pole (surname), including a list of people with the name * Pole (musician) (Stefan Betke, born 1967), German electronic music artist ...
of a magnetic sphere. He theorised that a similar phenomenon was responsible for
aurora An aurora ( aurorae or auroras), also commonly known as the northern lights (aurora borealis) or southern lights (aurora australis), is a natural light display in Earth's sky, predominantly observed in high-latitude regions (around the Arc ...
s, explaining why they are more frequent in polar regions.


Occurrences

The first scientific observation of the effects of a geomagnetic storm occurred early in the 19th century: from May 1806 until June 1807,
Alexander von Humboldt Friedrich Wilhelm Heinrich Alexander von Humboldt (14 September 1769 – 6 May 1859) was a German polymath, geographer, natural history, naturalist, List of explorers, explorer, and proponent of Romanticism, Romantic philosophy and Romanticism ...
recorded the bearing of a
magnetic compass A compass is a device that shows the cardinal directions used for navigation and geographic orientation. It commonly consists of a magnetized needle or other element, such as a compass card or compass rose, which can pivot to align itself with m ...
in Berlin. On 21 December 1806, he noticed that his compass had become erratic during a bright auroral event. On September 1–2, 1859, the largest recorded geomagnetic storm occurred. From August 28 until September 2, 1859, numerous
sunspot Sunspots are temporary spots on the Sun's surface that are darker than the surrounding area. They are one of the most recognizable Solar phenomena and despite the fact that they are mostly visible in the solar photosphere they usually aff ...
s and
solar flare A solar flare is a relatively intense, localized emission of electromagnetic radiation in the Sun's atmosphere. Flares occur in active regions and are often, but not always, accompanied by coronal mass ejections, solar particle events, and ot ...
s were observed on the Sun, with the largest flare on September 1. This is referred to as the solar storm of 1859 or the Carrington Event. It can be assumed that a massive
coronal mass ejection A coronal mass ejection (CME) is a significant ejection of plasma mass from the Sun's corona into the heliosphere. CMEs are often associated with solar flares and other forms of solar activity, but a broadly accepted theoretical understandin ...
was launched from the Sun and reached the Earth within eighteen hours—a trip that normally takes three to four days. The horizontal field was reduced by 1600 nT as recorded by the Colaba Observatory. It is estimated that Dst would have been approximately −1760 nT. Telegraph wires in both the United States and Europe experienced induced voltage increases ( emf), in some cases even delivering shocks to telegraph operators and igniting fires. Aurorae were seen as far south as Hawaii, Mexico, Cuba and Italy—phenomena that are usually only visible in polar regions.
Ice cores An ice core is a core sample that is typically removed from an ice sheet or a high mountain glacier. Since the ice forms from the incremental buildup of annual layers of snow, lower layers are older than upper ones, and an ice core contains i ...
show evidence that events of similar intensity recur at an average rate of approximately once per 500 years. Since 1859, less severe storms have occurred, notably the aurora of November 17, 1882 and the May 1921 geomagnetic storm, both with disruption of telegraph service and initiation of fires, and 1960, when widespread radio disruption was reported. In early August 1972, a series of flares and solar storms peaks with a flare estimated around X20 producing the fastest CME transit ever recorded and a severe geomagnetic and proton storm that disrupted terrestrial electrical and communications networks, as well as satellites (at least one made permanently inoperative), and spontaneously detonated numerous U.S. Navy magnetic-influence sea mines in North Vietnam. The March 1989 geomagnetic storm caused the collapse of the
Hydro-Québec Hydro-Québec () is a Canadian Crown corporations of Canada#Quebec, Crown corporation public utility headquartered in Montreal, Quebec. It manages the electricity generation, generation, electric power transmission, transmission and electricity ...
power grid in seconds as equipment protection relays tripped in a cascading sequence. Six million people were left without power for nine hours. The storm caused auroras as far south as
Texas Texas ( , ; or ) is the most populous U.S. state, state in the South Central United States, South Central region of the United States. It borders Louisiana to the east, Arkansas to the northeast, Oklahoma to the north, New Mexico to the we ...
and
Florida Florida ( ; ) is a U.S. state, state in the Southeastern United States, Southeastern region of the United States. It borders the Gulf of Mexico to the west, Alabama to the northwest, Georgia (U.S. state), Georgia to the north, the Atlantic ...
. The storm causing this event was the result of a coronal mass ejected from the Sun on March 9, 1989. The minimum Dst was −589 nT. On July 14, 2000, an X5 class flare erupted (known as the Bastille Day event) and a coronal mass was launched directly at the Earth. A geomagnetic super storm occurred on July 15–17; the minimum of the Dst index was −301 nT. Despite the storm's strength, no power distribution failures were reported. The Bastille Day event was observed by ''
Voyager 1 ''Voyager 1'' is a space probe launched by NASA on September 5, 1977, as part of the Voyager program to study the outer Solar System and the interstellar medium, interstellar space beyond the Sun's heliosphere. It was launched 16 days afte ...
'' and ''
Voyager 2 ''Voyager 2'' is a space probe launched by NASA on August 20, 1977, as a part of the Voyager program. It was launched on a trajectory towards the gas giants (Jupiter and Saturn) and enabled further encounters with the ice giants (Uranus and ...
'', thus it is the farthest out in the Solar System that a solar storm has been observed. Seventeen major flares erupted on the Sun between 19 October and 5 November 2003, including perhaps the most intense flare ever measured on the
GOES The Geostationary Operational Environmental Satellite (GOES), operated by the United States' National Oceanic and Atmospheric Administration (NOAA)'s National Environmental Satellite, Data, and Information Service division, supports weather fo ...
XRS sensor—a huge X28 flare, resulting in an extreme radio blackout, on 4 November. These flares were associated with CME events that caused three geomagnetic storms between 29 October and 2 November, during which the second and third storms were initiated before the previous storm period had fully recovered. The minimum Dst values were −151, −353 and −383 nT. Another storm in this sequence occurred on 4–5 November with a minimum Dst of −69 nT. The last geomagnetic storm was weaker than the preceding storms, because the active region on the Sun had rotated beyond the meridian where the central portion CME created during the flare event passed to the side of the Earth. The whole sequence became known as the Halloween Solar Storm. The
Wide Area Augmentation System The Wide Area Augmentation System (WAAS) is an air navigation aid developed by the Federal Aviation Administration to augment the Global Positioning System (GPS), with the goal of improving its accuracy, integrity, and availability. Essentia ...
(WAAS) operated by the
Federal Aviation Administration The Federal Aviation Administration (FAA) is a Federal government of the United States, U.S. federal government agency within the United States Department of Transportation, U.S. Department of Transportation that regulates civil aviation in t ...
(FAA) was offline for approximately 30 hours due to the storm. The Japanese ADEOS-2 satellite was severely damaged and the operation of many other satellites were interrupted due to the storm.


Interactions with planetary processes

The solar wind also carries with it the Sun's magnetic field. This field will have either a North or South orientation. If the solar wind has energetic bursts, contracting and expanding the magnetosphere, or if the solar wind takes a southward polarization, geomagnetic storms can be expected. The southward field causes
magnetic reconnection Magnetic reconnection is a physical process occurring in electrically conducting Plasma (physics), plasmas, in which the magnetic topology is rearranged and magnetic energy is converted to kinetic energy, thermal energy, and particle accelerati ...
of the dayside magnetopause, rapidly injecting magnetic and particle energy into the Earth's magnetosphere. During a geomagnetic storm, the ionosphere's F2 layer becomes unstable, fragments, and may even disappear. In the northern and southern pole regions of the Earth, auroras are observable.


Instruments

Magnetometer A magnetometer is a device that measures magnetic field or magnetic dipole moment. Different types of magnetometers measure the direction, strength, or relative change of a magnetic field at a particular location. A compass is one such device, ...
s monitor the auroral zone as well as the equatorial region. Two types of
radar Radar is a system that uses radio waves to determine the distance ('' ranging''), direction ( azimuth and elevation angles), and radial velocity of objects relative to the site. It is a radiodetermination method used to detect and track ...
, coherent scatter and incoherent scatter, are used to probe the auroral ionosphere. By bouncing signals off ionospheric irregularities, which move with the field lines, one can trace their motion and infer magnetospheric convection. Spacecraft instruments include: * Magnetometers, usually of the flux gate type. Usually these are at the end of booms, to keep them away from magnetic interference by the spacecraft and its electric circuits. * Electric sensors at the ends of opposing booms are used to measure potential differences between separated points, to derive electric fields associated with convection. The method works best at high plasma densities in low Earth orbit; far from Earth long booms are needed, to avoid shielding-out of electric forces. * Radio sounders from the ground can bounce radio waves of varying frequency off the ionosphere, and by timing their return determine the electron density profile—up to its peak, past which radio waves no longer return. Radio sounders in low Earth orbit aboard the Canadian Alouette 1 (1962) and Alouette 2 (1965), beamed radio waves earthward and observed the electron density profile of the "topside ionosphere". Other radio sounding methods were also tried in the ionosphere (e.g. on
IMAGE An image or picture is a visual representation. An image can be Two-dimensional space, two-dimensional, such as a drawing, painting, or photograph, or Three-dimensional space, three-dimensional, such as a carving or sculpture. Images may be di ...
). * Particle detectors include a
Geiger counter A Geiger counter (, ; also known as a Geiger–Müller counter or G-M counter) is an electronic instrument for detecting and measuring ionizing radiation with the use of a Geiger–Müller tube. It is widely used in applications such as radiat ...
, as was used for the original observations of the
Van Allen radiation belt The Van Allen radiation belt is a zone of energetic charged particles, most of which originate from the solar wind, that are captured by and held around a planet by that planet's magnetosphere. Earth has two such belts, and sometimes others ma ...
. Scintillator detectors came later, and still later "channeltron"
electron multiplier An electron multiplier is a vacuum-tube structure that multiplies incident charges. In a process called secondary emission, a single electron can, when bombarded on secondary-emissive material, induce emission of roughly 1 to 3 electrons. If an ele ...
s found particularly wide use. To derive charge and mass composition, as well as energies, a variety of mass spectrograph designs were used. For energies up to about 50 keV (which constitute most of the magnetospheric plasma) time-of-flight spectrometers (e.g. "top-hat" design) are widely used. Computers have made it possible to bring together decades of isolated magnetic observations and extract average patterns of electrical currents and average responses to interplanetary variations. They also run simulations of the global magnetosphere and its responses, by solving the equations of
magnetohydrodynamics In physics and engineering, magnetohydrodynamics (MHD; also called magneto-fluid dynamics or hydro­magnetics) is a model of electrically conducting fluids that treats all interpenetrating particle species together as a single Continuum ...
(MHD) on a numerical grid. Appropriate extensions must be added to cover the inner magnetosphere, where magnetic drifts and ionospheric conduction need to be taken into account. At polar regions, directly linked to the
solar wind The solar wind is a stream of charged particles released from the Sun's outermost atmospheric layer, the Stellar corona, corona. This Plasma (physics), plasma mostly consists of electrons, protons and alpha particles with kinetic energy betwee ...
, large-scale ionospheric anomalies can be successfully modeled, even during geomagnetic super-storms. At smaller scales (comparable to a degree of latitude/longitude) the results are difficult to interpret, and certain assumptions about the high-latitude forcing uncertainty are needed.


Impacts


Infrastructure

It has been suggested that a geomagnetic storm on the scale of the solar storm of 1859 today would cause billions or even trillions of dollars of damage to satellites, power grids and radio communications, and could cause electrical blackouts on a massive scale that might not be repaired for weeks, months, or even years. Such sudden electrical blackouts may threaten food production.


Electrical grid

When
magnetic field A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
s move about in the vicinity of a conductor such as a wire, a geomagnetically induced current is produced in the conductor. This happens on a grand scale during geomagnetic storms (the same mechanism also influenced telephone and telegraph lines before fiber optics, see above) on all long transmission lines. Long transmission lines (many kilometers in length) are thus subject to damage by this effect. Notably, this chiefly includes operators in China, North America, and Australia, especially in modern high-voltage, low-resistance lines. The European grid consists mainly of shorter transmission circuits, which are less vulnerable to damage. The (nearly direct) currents induced in these lines from geomagnetic storms are harmful to electrical transmission equipment, especially
transformer In electrical engineering, a transformer is a passive component that transfers electrical energy from one electrical circuit to another circuit, or multiple Electrical network, circuits. A varying current in any coil of the transformer produces ...
s—inducing core saturation, constraining their performance (as well as tripping various safety devices), and causing coils and cores to heat up. In extreme cases, this heat can disable or destroy them, even inducing a chain reaction that can overload transformers. Most generators are connected to the grid via transformers, isolating them from the induced currents on the grid, making them much less susceptible to damage due to geomagnetically induced current. However, a transformer that is subjected to this will act as an unbalanced load to the generator, causing negative sequence current in the stator and consequently rotor heating. A 2008 study by Metatech corporation concluded that a storm with a strength comparable to that of 1921 would destroy more than 300 transformers and leave over 130 million people without power in the United States, costing several trillion dollars. The extent of the disruption is debated, with some congressional testimony indicating a potentially indefinite outage until transformers can be replaced or repaired. These predictions are contradicted by a
North American Electric Reliability Corporation The North American Electric Reliability Corporation (NERC) is a nonprofit corporation based in Atlanta, Georgia, and formed on March 28, 2006, as the successor to the North American Electric Reliability Council (also known as NERC). The original ...
report that concludes that a geomagnetic storm would cause temporary grid instability but no widespread destruction of high-voltage transformers. The report points out that the widely quoted Quebec grid collapse was not caused by overheating transformers but by the near-simultaneous tripping of seven relays. In 2016, the United States
Federal Energy Regulatory Commission The Federal Energy Regulatory Commission (FERC) is an independent agency of the United States government that regulates the interstate transmission and wholesale sale of electricity and natural gas and regulates the prices of interstate transport ...
adopted NEARC rules for equipment testing for electric utilities. Implementation of any upgrades needed to protect against the effects of geomagnetic storms was required within four years, and the regulations also directed further research. Besides the transformers being vulnerable to the effects of a geomagnetic storm, electricity companies can also be affected indirectly by the geomagnetic storm. For instance, Internet service providers may go down during geomagnetic storms (and/or remain non-operational long after). Electricity companies may have equipment requiring a working Internet connection to function, so during the period the Internet service provider is down, the electricity too may not be distributed. By receiving geomagnetic storm alerts and warnings (e.g. by the Space Weather Prediction Center; via Space Weather satellites as SOHO or ACE), power companies can minimize damage to power transmission equipment, by momentarily disconnecting transformers or by inducing temporary blackouts. Preventive measures also exist, including preventing the inflow of GICs into the grid through the neutral-to-ground connection.


Communications

High frequency High frequency (HF) is the ITU designation for the band of radio waves with frequency between 3 and 30 megahertz (MHz). It is also known as the decameter band or decameter wave as its wavelengths range from one to ten decameters (ten to one ...
(3–30 MHz) communication systems use the ionosphere to reflect radio signals over long distances. Ionospheric storms can affect radio communication at all latitudes. Some frequencies are absorbed and others are reflected, leading to rapidly fluctuating signals and unexpected propagation paths. TV and commercial radio stations are little affected by solar activity, but ground-to-air, ship-to-shore,
shortwave Shortwave radio is radio transmission using radio frequencies in the shortwave bands (SW). There is no official definition of the band range, but it always includes all of the high frequency band (HF), which extends from 3 to 30 MHz (app ...
broadcast Broadcasting is the data distribution, distribution of sound, audio audiovisual content to dispersed audiences via a electronic medium (communication), mass communications medium, typically one using the electromagnetic spectrum (radio waves), ...
and
amateur radio Amateur radio, also known as ham radio, is the use of the radio frequency radio spectrum, spectrum for purposes of non-commercial exchange of messages, wireless experimentation, self-training, private recreation, radiosport, contesting, and emer ...
(mostly the bands below 30 MHz) are frequently disrupted. Radio operators using HF bands rely upon solar and geomagnetic alerts to keep their communication circuits up and running. Military detection or early warning systems operating in the high frequency range are also affected by solar activity. The '' over-the-horizon radar'' bounces signals off the ionosphere to monitor the launch of aircraft and missiles from long distances. During geomagnetic storms, this system can be severely hampered by radio clutter. Also some submarine detection systems use the magnetic signatures of submarines as one input to their locating schemes. Geomagnetic storms can mask and distort these signals. The
Federal Aviation Administration The Federal Aviation Administration (FAA) is a Federal government of the United States, U.S. federal government agency within the United States Department of Transportation, U.S. Department of Transportation that regulates civil aviation in t ...
routinely receives alerts of solar radio bursts so that they can recognize communication problems and avoid unnecessary maintenance. When an aircraft and a ground station are aligned with the Sun, high levels of noise can occur on air-control radio frequencies. This can also happen on
UHF Ultra high frequency (UHF) is the ITU designation for radio frequencies in the range between 300 megahertz (MHz) and 3 gigahertz (GHz), also known as the decimetre band as the wavelengths range from one meter to one tenth of a meter ...
and SHF satellite communications, when an Earth station, a satellite and the Sun are in
alignment Alignment may refer to: Archaeology * Alignment (archaeology), a co-linear arrangement of features or structures with external landmarks * Stone alignment, a linear arrangement of upright, parallel megalithic standing stones Biology * Struc ...
. In order to prevent unnecessary maintenance on satellite communications systems aboard aircraft AirSatOne provides a live feed for geophysical events from NOAA's Space Weather Prediction Center. allows users to view observed and predicted space storms. Geophysical Alerts are important to flight crews and maintenance personnel to determine if any upcoming activity or history has or will have an effect on satellite communications, GPS navigation and HF Communications.
Telegraph Telegraphy is the long-distance transmission of messages where the sender uses symbolic codes, known to the recipient, rather than a physical exchange of an object bearing the message. Thus flag semaphore is a method of telegraphy, whereas ...
lines in the past were affected by geomagnetic storms. Telegraphs used a single long wire for the data line, stretching for many miles, using the ground as the return wire and fed with DC power from a battery; this made them (together with the power lines mentioned below) susceptible to being influenced by the fluctuations caused by the
ring current A ring current is an electric current carried by charged particles trapped in a planet's magnetosphere. It is caused by the longitudinal drift of energetic (10–200 k eV) particles. Earth Earth's ring current is responsible for shielding th ...
. The voltage/current induced by the geomagnetic storm could have diminished the signal, when subtracted from the battery polarity, or to overly strong and spurious signals when added to it; some operators learned to disconnect the battery and rely on the induced current as their power source. In extreme cases the induced current was so high the coils at the receiving side burst in flames, or the operators received electric shocks. Geomagnetic storms affect also long-haul telephone lines, including undersea cables unless they are
fiber optic An optical fiber, or optical fibre, is a flexible glass or plastic fiber that can transmit light from one end to the other. Such fibers find wide usage in fiber-optic communications, where they permit transmission over longer distances and at ...
. Damage to communications satellites can disrupt non-terrestrial telephone, television, radio and Internet links. The
National Academy of Sciences The National Academy of Sciences (NAS) is a United States nonprofit, NGO, non-governmental organization. NAS is part of the National Academies of Sciences, Engineering, and Medicine, along with the National Academy of Engineering (NAE) and the ...
reported in 2008 on possible scenarios of widespread disruption in the 2012–2013 solar peak. A solar superstorm could cause large-scale global months-long
Internet outage An Internet outage or Internet blackout or Internet shutdown is the complete or partial failure of the Internet access, internet services. It can occur due to Internet censorship, censorship, cyberattacks, disasters, police or security services ac ...
s. A study describes potential mitigation measures and exceptions – such as user-powered mesh networks, related
peer-to-peer Peer-to-peer (P2P) computing or networking is a distributed application architecture that partitions tasks or workloads between peers. Peers are equally privileged, equipotent participants in the network, forming a peer-to-peer network of Node ...
applications and new protocols – and analyzes the robustness of the current Internet infrastructure.


Navigation systems

Global navigation satellite systems (GNSS), and other navigation systems such as
LORAN LORAN (Long Range Navigation) was a hyperbolic navigation, hyperbolic radio navigation system developed in the United States during World War II. It was similar to the UK's Gee (navigation), Gee system but operated at lower frequencies in order ...
and the now-defunct
OMEGA Omega (, ; uppercase Ω, lowercase ω; Ancient Greek ὦ, later ὦ μέγα, Modern Greek ωμέγα) is the twenty-fourth and last letter in the Greek alphabet. In the Greek numerals, Greek numeric system/isopsephy (gematria), it has a value ...
are adversely affected when solar activity disrupts their signal propagation. The OMEGA system consisted of eight transmitters located throughout the world. Airplanes and ships used the very low frequency signals from these transmitters to determine their positions. During solar events and geomagnetic storms, the system gave navigators information that was inaccurate by as much as several miles. If navigators had been alerted that a proton event or geomagnetic storm was in progress, they could have switched to a backup system. GNSS signals are affected when solar activity causes sudden variations in the density of the ionosphere, causing the satellite signals to scintillate (like a twinkling star). The scintillation of satellite signals during ionospheric disturbances is studied at HAARP during ionospheric modification experiments. It has also been studied at the Jicamarca Radio Observatory. One technology used to allow GNSS receivers to continue to operate in the presence of some confusing signals is
Receiver Autonomous Integrity Monitoring Receiver autonomous integrity monitoring (RAIM) is a technology developed to assess the integrity of individual signals collected and integrated by the receiver units employed in a Global Navigation Satellite System (GNSS). The integrity of rec ...
(RAIM), used by GPS. However, RAIM is predicated on the assumption that a majority of the GPS constellation is operating properly, and so it is much less useful when the entire constellation is perturbed by global influences such as geomagnetic storms. Even if RAIM detects a loss of integrity in these cases, it may not be able to provide a useful, reliable signal.


Satellites

Geomagnetic storms and increased solar
ultraviolet Ultraviolet radiation, also known as simply UV, is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight and constitutes about 10% of ...
emission heat Earth's upper atmosphere, causing it to expand. The heated air rises, and the density at the orbit of
satellite A satellite or an artificial satellite is an object, typically a spacecraft, placed into orbit around a celestial body. They have a variety of uses, including communication relay, weather forecasting, navigation ( GPS), broadcasting, scient ...
s up to about increases significantly. This results in increased drag, causing satellites to slow and change
orbit In celestial mechanics, an orbit (also known as orbital revolution) is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an ...
slightly.
Low Earth orbit A low Earth orbit (LEO) is an geocentric orbit, orbit around Earth with a orbital period, period of 128 minutes or less (making at least 11.25 orbits per day) and an orbital eccentricity, eccentricity less than 0.25. Most of the artificial object ...
satellites that are not repeatedly boosted to higher orbits slowly fall and eventually burn up.
Skylab Skylab was the United States' first space station, launched by NASA, occupied for about 24 weeks between May 1973 and February 1974. It was operated by three trios of astronaut crews: Skylab 2, Skylab 3, and Skylab 4. Skylab was constructe ...
's 1979 destruction is an example of a spacecraft reentering Earth's atmosphere prematurely as a result of higher-than-expected solar activity. During the great geomagnetic storm of March 1989, four of the U.S. Navy's navigational satellites had to be taken out of service for up to a week, the U.S. Space Command had to post new
orbital elements Orbital elements are the parameters required to uniquely identify a specific orbit. In celestial mechanics these elements are considered in two-body systems using a Kepler orbit. There are many different ways to mathematically describe the same o ...
for over 1000 objects affected, and the Solar Maximum Mission satellite fell out of orbit in December the same year. The vulnerability of the satellites depends on their position as well. The South Atlantic Anomaly is a perilous place for a satellite to pass through, due to the unusually weak geomagnetic field at low Earth orbit.


Pipelines

Rapidly fluctuating geomagnetic fields can produce geomagnetically induced currents in
pipeline A pipeline is a system of Pipe (fluid conveyance), pipes for long-distance transportation of a liquid or gas, typically to a market area for consumption. The latest data from 2014 gives a total of slightly less than of pipeline in 120 countries ...
s. This can cause multiple problems for pipeline engineers. Pipeline flow meters can transmit erroneous flow information and the
corrosion Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials (usually a metal) by chemical or electrochemical reaction with their environment. Corrosion engine ...
rate of the pipeline can be dramatically increased.


Radiation hazards to humans

Earth's atmosphere and magnetosphere allow adequate protection at ground level, but
astronaut An astronaut (from the Ancient Greek (), meaning 'star', and (), meaning 'sailor') is a person trained, equipped, and deployed by a List of human spaceflight programs, human spaceflight program to serve as a commander or crew member of a spa ...
s are subject to potentially lethal radiation poisoning. The penetration of high-energy particles into living cells can cause
chromosome A chromosome is a package of DNA containing part or all of the genetic material of an organism. In most chromosomes, the very long thin DNA fibers are coated with nucleosome-forming packaging proteins; in eukaryotic cells, the most import ...
damage,
cancer Cancer is a group of diseases involving Cell growth#Disorders, abnormal cell growth with the potential to Invasion (cancer), invade or Metastasis, spread to other parts of the body. These contrast with benign tumors, which do not spread. Po ...
and other health problems. Large doses can be immediately fatal. Solar
proton A proton is a stable subatomic particle, symbol , Hydron (chemistry), H+, or 1H+ with a positive electric charge of +1 ''e'' (elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an e ...
s with energies greater than 30  MeV are particularly hazardous. Solar proton events can also produce elevated radiation aboard
aircraft An aircraft ( aircraft) is a vehicle that is able to flight, fly by gaining support from the Atmosphere of Earth, air. It counters the force of gravity by using either Buoyancy, static lift or the Lift (force), dynamic lift of an airfoil, or, i ...
flying at high altitudes. Although these risks are small,
flight crew Aircrew are personnel who operate an aircraft while in flight. The composition of a flight's crew depends on the type of aircraft, plus the flight's duration and purpose. Commercial aviation Flight deck positions In commercial aviation, ...
s may be exposed repeatedly, and monitoring of solar proton events by satellite instrumentation allows exposure to be monitored and evaluated, and eventually flight paths and altitudes to be adjusted to lower the absorbed dose.
Ground level enhancement A Ground Level Enhancement or Ground Level Event (GLE), is a special subset of solar particle event where charged particles from the Sun have sufficient energy to generate effects which can be measured at the Earth's surface. These particles (mos ...
s, also known as ground level events or GLEs, occur when a
solar particle event In solar physics, a solar particle event (SPE), also known as a solar energetic particle event or solar radiation storm, is a solar phenomenon which occurs when particles emitted by the Sun, mostly protons, become accelerated either in the Sun's ...
contains particles with sufficient energy to have effects at ground level, mainly detected as an increase in the number of neutrons measured at ground level. These events have been shown to have an impact on radiation dosage, but they do not significantly increase the risk of cancer.


Animals

There is a large but controversial body of scientific literature on connections between geomagnetic storms and human health. This began with Russian papers, and the subject was subsequently studied by Western scientists. Theories for the cause include the involvement of
cryptochrome Cryptochromes (from the Greek κρυπτός χρώμα, "hidden colour") are a class of flavoproteins found in plants and animals that are sensitive to blue light. They are involved in the circadian rhythms and the sensing of magnetic fiel ...
,
melatonin Melatonin, an indoleamine, is a natural compound produced by various organisms, including bacteria and eukaryotes. Its discovery in 1958 by Aaron B. Lerner and colleagues stemmed from the isolation of a substance from the pineal gland of cow ...
, the
pineal gland The pineal gland (also known as the pineal body or epiphysis cerebri) is a small endocrine gland in the brain of most vertebrates. It produces melatonin, a serotonin-derived hormone, which modulates sleep, sleep patterns following the diurnal c ...
, and the
circadian rhythm A circadian rhythm (), or circadian cycle, is a natural oscillation that repeats roughly every 24 hours. Circadian rhythms can refer to any process that originates within an organism (i.e., Endogeny (biology), endogenous) and responds to the env ...
. Some scientists suggest that solar storms induce whales to beach themselves. Some have speculated that migrating animals which use magnetoreception to navigate, such as birds and honey bees, might also be affected.


See also


References


Further reading

* * * Carlowicz, M., and R. Lopez
Storms from the Sun
Joseph Henry Press, 2002, www.stormsfromthesun.net * * * * * * * * * * Odenwald, S., 2003
"The Human Impacts of Space Weather"
* Stoupel, E., (1999
Effect of geomagnetic activity on cardiovascular parameters
Journal of Clinical and Basic Cardiology, 2, Issue 1, 1999, pp 34–40. IN James A. Marusek (2007) Solar Storm Threat Analysis, ''Impact, Bloomfield, Indiana 47424'' * Volland, H., (1984), "Atmospheric Electrodynamics", Kluwer Publ., Dordrecht


External links


Live solar and geomagnetic activity data at Spaceweather



Real time magnetograms

Aurora Watch
at Lancaster University
USGS Geomagnetism program

Paper on the risk of a repeat of 1859 Carrington Event
by John Beddington Links related to power grids:
Geomagnetic Storm Induced HVAC Transformer Failure is Avoidable

NOAA Economics – Geomagnetic Storm datasets and Economic Research


{{Authority control Astronomical events of the Solar System Geomagnetism Ionosphere Natural disasters Solar phenomena Sources of electromagnetic interference Space hazards Space weather