HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a complete manifold (or geodesically complete manifold) is a ( pseudo-)
Riemannian manifold In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real manifold, real, smooth manifold ''M'' equipped with a positive-definite Inner product space, inner product ...
for which, starting at any point , you can follow a "straight" line indefinitely along any direction. More formally, the exponential map at point , is defined on , the entire tangent space at . Equivalently, consider a maximal
geodesic In geometry, a geodesic () is a curve representing in some sense the shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. ...
\ell\colon I\to M. Here I is an open interval of \mathbb, and, because geodesics are parameterized with "constant speed", it is uniquely defined up to transversality. Because I is maximal, \ell maps the ends of I to points of , and the length of I measures the distance between those points. A manifold is geodesically complete if for any such geodesic \ell, we have that I=(-\infty,\infty).


Examples and non-examples

Euclidean space \mathbb^n, the spheres \mathbb^n, and the tori \mathbb^n (with their natural Riemannian metrics) are all complete manifolds. All compact Riemannian manifolds and all
homogeneous Homogeneity and heterogeneity are concepts often used in the sciences and statistics relating to the uniformity of a substance or organism. A material or image that is homogeneous is uniform in composition or character (i.e. color, shape, siz ...
manifolds are geodesically complete. All symmetric spaces are geodesically complete. Every finite-dimensional
path-connected In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. Connectedness is one of the principal topological properties that ...
Riemannian manifold which is also a complete metric space (with respect to the Riemannian distance) is geodesically complete. In fact, geodesic completeness and metric completeness are equivalent for these spaces. This is the content of the Hopf–Rinow theorem.


Non-examples

A simple example of a non-complete manifold is given by the punctured plane \mathbb^2 \smallsetminus \lbrace 0 \rbrace (with its induced metric). Geodesics going to the origin cannot be defined on the entire real line. By the Hopf–Rinow theorem, we can alternatively observe that it is not a complete metric space: any sequence in the plane converging to the origin is a non-converging Cauchy sequence in the punctured plane. There exist non-geodesically complete compact pseudo-Riemannian (but not Riemannian) manifolds. An example of this is the Clifton–Pohl torus. In the theory of general relativity, which describes gravity in terms of a pseudo-Riemannian geometry, many important examples of geodesically incomplete spaces arise, e.g. non-rotating uncharged black-holes or cosmologies with a
Big Bang The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the ...
. The fact that such incompleteness is fairly generic in general relativity is shown in the Penrose–Hawking singularity theorems.


References

* {{DEFAULTSORT:Complete Manifold Differential geometry Geodesic (mathematics) Manifolds Riemannian geometry