In
algebraic number theory, a Gauss sum or Gaussian sum is a particular kind of finite
sum
Sum most commonly means the total of two or more numbers added together; see addition.
Sum can also refer to:
Mathematics
* Sum (category theory), the generic concept of summation in mathematics
* Sum, the result of summation, the additio ...
of
roots of unity
In mathematics, a root of unity, occasionally called a de Moivre number, is any complex number that yields 1 when raised to some positive integer power . Roots of unity are used in many branches of mathematics, and are especially important i ...
, typically
:
where the sum is over elements of some
finite
Finite is the opposite of infinite. It may refer to:
* Finite number (disambiguation)
* Finite set, a set whose cardinality (number of elements) is some natural number
* Finite verb
Traditionally, a finite verb (from la, fīnītus, past partici ...
commutative ring , is a
group homomorphism
In mathematics, given two groups, (''G'', ∗) and (''H'', ·), a group homomorphism from (''G'', ∗) to (''H'', ·) is a function ''h'' : ''G'' → ''H'' such that for all ''u'' and ''v'' in ''G'' it holds that
: h(u*v) = h(u) \cdot h(v)
...
of the
additive group
An additive group is a group of which the group operation is to be thought of as ''addition'' in some sense. It is usually abelian, and typically written using the symbol + for its binary operation.
This terminology is widely used with structure ...
into the
unit circle
In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Eucli ...
, and is a group homomorphism of the
unit group
In algebra, a unit of a ring is an invertible element for the multiplication of the ring. That is, an element of a ring is a unit if there exists in such that
vu = uv = 1,
where is the multiplicative identity; the element is unique for this ...
into the unit circle, extended to non-unit , where it takes the value 0. Gauss sums are the analogues for finite fields of the
Gamma function
In mathematics, the gamma function (represented by , the capital letter gamma from the Greek alphabet) is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except th ...
.
Such sums are ubiquitous in
number theory
Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Math ...
. They occur, for example, in the functional equations of
Dirichlet -functions, where for a
Dirichlet character
In analytic number theory and related branches of mathematics, a complex-valued arithmetic function \chi:\mathbb\rightarrow\mathbb is a Dirichlet character of modulus m (where m is a positive integer) if for all integers a and b:
:1) \c ...
the equation relating and ) (where is the
complex conjugate
In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, (if a and b are real, then) the complex conjugate of a + bi is equal to a - ...
of ) involves a factor
:
History
The case originally considered by
Carl Friedrich Gauss
Johann Carl Friedrich Gauss (; german: Gauß ; la, Carolus Fridericus Gauss; 30 April 177723 February 1855) was a German mathematician and physicist who made significant contributions to many fields in mathematics and science. Sometimes refe ...
was the
quadratic Gauss sum In number theory, quadratic Gauss sums are certain finite sums of roots of unity. A quadratic Gauss sum can be interpreted as a linear combination of the values of the complex exponential function with coefficients given by a quadratic character; fo ...
, for the
field of residues modulo
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another (called the '' modulus'' of the operation).
Given two positive numbers and , modulo (often abbreviated as ) is t ...
a
prime number
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only way ...
, and the
Legendre symbol
In number theory, the Legendre symbol is a multiplicative function with values 1, −1, 0 that is a quadratic character modulo an odd prime number ''p'': its value at a (nonzero) quadratic residue mod ''p'' is 1 and at a non-quadratic residue ...
. In this case Gauss proved that or for congruent to 1 or 3 modulo 4 respectively (the quadratic Gauss sum can also be evaluated by Fourier analysis as well as by
contour integration
In the mathematical field of complex analysis, contour integration is a method of evaluating certain integrals along paths in the complex plane.
Contour integration is closely related to the calculus of residues, a method of complex analysis.
...
).
An alternate form for this Gauss sum is:
:
Quadratic Gauss sums are closely connected with the theory of
theta function
In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field ...
s.
The general theory of Gauss sums was developed in the early 19th century, with the use of
Jacobi sum
In mathematics, a Jacobi sum is a type of character sum formed with Dirichlet characters. Simple examples would be Jacobi sums ''J''(''χ'', ''ψ'') for Dirichlet characters ''χ'', ''ψ'' modulo a prime number ''p'', defined by
: J(\chi,\psi) ...
s and their
prime decomposition
In number theory, integer factorization is the decomposition of a composite number into a product of smaller integers. If these factors are further restricted to prime numbers, the process is called prime factorization.
When the numbers are su ...
in
cyclotomic field
In number theory, a cyclotomic field is a number field obtained by adjoining a complex root of unity to , the field of rational numbers.
Cyclotomic fields played a crucial role in the development of modern algebra and number theory because o ...
s. Gauss sums over a residue ring of integers are linear combinations of closely related sums called
Gaussian period
In mathematics, in the area of number theory, a Gaussian period is a certain kind of sum of roots of unity. The periods permit explicit calculations in cyclotomic fields connected with Galois theory and with harmonic analysis (discrete Fourier tra ...
s.
The absolute value of Gauss sums is usually found as an application of
Plancherel's theorem
In mathematics, the Plancherel theorem (sometimes called the Parseval–Plancherel identity) is a result in harmonic analysis, proven by Michel Plancherel in 1910. It states that the integral of a function's squared modulus is equal to the integr ...
on finite groups. In the case where is a field of elements and is nontrivial, the absolute value is . The determination of the exact value of general Gauss sums, following the result of Gauss on the quadratic case, is a long-standing issue. For some cases see
Kummer sum In mathematics, Kummer sum is the name given to certain cubic Gauss sums for a prime modulus ''p'', with ''p'' congruent to 1 modulo 3. They are named after Ernst Kummer, who made a conjecture about the statistical properties of their arguments, as ...
.
Properties of Gauss sums of Dirichlet characters
The Gauss sum of a
Dirichlet character
In analytic number theory and related branches of mathematics, a complex-valued arithmetic function \chi:\mathbb\rightarrow\mathbb is a Dirichlet character of modulus m (where m is a positive integer) if for all integers a and b:
:1) \c ...
modulo is
:
If is also
primitive
Primitive may refer to:
Mathematics
* Primitive element (field theory)
* Primitive element (finite field)
* Primitive cell (crystallography)
* Primitive notion, axiomatic systems
* Primitive polynomial (disambiguation), one of two concepts
* Pr ...
, then
:
in particular, it is nonzero. More generally, if is the
conductor
Conductor or conduction may refer to:
Music
* Conductor (music), a person who leads a musical ensemble, such as an orchestra.
* ''Conductor'' (album), an album by indie rock band The Comas
* Conduction, a type of structured free improvisation ...
of and is the primitive Dirichlet character modulo that induces , then the Gauss sum of is related to that of by
:
where is the
Möbius function
The Möbius function is a multiplicative function in number theory introduced by the German mathematician August Ferdinand Möbius (also transliterated ''Moebius'') in 1832. It is ubiquitous in elementary and analytic number theory and most of ...
. Consequently, is non-zero precisely when is
squarefree
In mathematics, a square-free integer (or squarefree integer) is an integer which is divisible by no square number other than 1. That is, its prime factorization has exactly one factor for each prime that appears in it. For example, is square-f ...
and
relatively prime
In mathematics, two integers and are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides does not divide , and vice versa. This is equival ...
to .
[Theorem 9.10 in H. L. Montgomery, R. C. Vaughan, ''Multiplicative number theory. I. Classical theory'', Cambridge Studies in Advanced Mathematics, 97, (2006).]
Other relations between and Gauss sums of other characters include
:
where is the complex conjugate Dirichlet character, and if is a Dirichlet character modulo such that and are relatively prime, then
:
The relation among , , and when and are of the ''same'' modulus (and is primitive) is measured by the
Jacobi sum
In mathematics, a Jacobi sum is a type of character sum formed with Dirichlet characters. Simple examples would be Jacobi sums ''J''(''χ'', ''ψ'') for Dirichlet characters ''χ'', ''ψ'' modulo a prime number ''p'', defined by
: J(\chi,\psi) ...
. Specifically,
:
Further properties
*Gauss sums can be used to prove
quadratic reciprocity
In number theory, the law of quadratic reciprocity is a theorem about modular arithmetic that gives conditions for the solvability of quadratic equations modulo prime numbers. Due to its subtlety, it has many formulations, but the most standard s ...
,
cubic reciprocity
Cubic reciprocity is a collection of theorems in elementary and algebraic number theory that state conditions under which the congruence ''x''3 ≡ ''p'' (mod ''q'') is solvable; the word "reciprocity" comes from the form of ...
and
quartic reciprocity
Quartic or biquadratic reciprocity is a collection of theorems in elementary and algebraic number theory that state conditions under which the congruence ''x''4 ≡ ''p'' (mod ''q'') is solvable; the word "reciprocity" comes from the form ...
*Gauss sums can be used to calculate the number of solutions of polynomial equations over finite fields, and thus can be used to calculate certain zeta functions
See also
*
Chowla–Mordell theorem
In mathematics, the Chowla–Mordell theorem is a result in number theory determining cases where a Gauss sum is the square root of a prime number, multiplied by a root of unity. It was proved and published independently by Sarvadaman Chowla and Lo ...
*
Elliptic Gauss sum
In mathematics, an elliptic Gauss sum is an analog of a Gauss sum depending on an elliptic curve with complex multiplication. The quadratic residue symbol in a Gauss sum is replaced by a higher residue symbol such as a cubic or quartic residue symb ...
*
Gaussian period
In mathematics, in the area of number theory, a Gaussian period is a certain kind of sum of roots of unity. The periods permit explicit calculations in cyclotomic fields connected with Galois theory and with harmonic analysis (discrete Fourier tra ...
*
Hasse–Davenport relation
The Hasse–Davenport relations, introduced by , are two related identities for Gauss sums, one called the Hasse–Davenport lifting relation, and the other called the Hasse–Davenport product relation. The Hasse–Davenport lifting relation is a ...
*
Jacobi sum
In mathematics, a Jacobi sum is a type of character sum formed with Dirichlet characters. Simple examples would be Jacobi sums ''J''(''χ'', ''ψ'') for Dirichlet characters ''χ'', ''ψ'' modulo a prime number ''p'', defined by
: J(\chi,\psi) ...
*
Stickelberger's theorem
In mathematics, Stickelberger's theorem is a result of algebraic number theory, which gives some information about the Galois module structure of class groups of cyclotomic fields. A special case was first proven by Ernst Kummer (1847) while the ...
*
Quadratic Gauss sum In number theory, quadratic Gauss sums are certain finite sums of roots of unity. A quadratic Gauss sum can be interpreted as a linear combination of the values of the complex exponential function with coefficients given by a quadratic character; fo ...
*
Kummer sum In mathematics, Kummer sum is the name given to certain cubic Gauss sums for a prime modulus ''p'', with ''p'' congruent to 1 modulo 3. They are named after Ernst Kummer, who made a conjecture about the statistical properties of their arguments, as ...
References
*
*
*
*Section 3.4 of
{{DEFAULTSORT:Gauss Sum
Cyclotomic fields