Gas Hydrate Stability Zone
   HOME

TheInfoList



OR:

Gas hydrate stability zone, abbreviated GHSZ, also referred to as methane hydrate stability zone (MHSZ) or hydrate stability zone (HSZ), refers to a zone and depth of the
marine environment A marine habitat is a habitat that supports marine life. Marine life depends in some way on the saltwater that is in the sea (the term ''marine'' comes from the Latin ''mare'', meaning sea or ocean). A habitat is an ecological or environmen ...
at which
methane clathrate Methane clathrate (CH4·5.75H2O) or (4CH4·23H2O), also called methane hydrate, hydromethane, methane ice, fire ice, natural gas hydrate, or gas hydrate, is a solid clathrate compound (more specifically, a clathrate hydrate) in which a large a ...
s naturally exist in the
Earth's crust Earth's crust is its thick outer shell of rock, referring to less than one percent of the planet's radius and volume. It is the top component of the lithosphere, a solidified division of Earth's layers that includes the crust and the upper ...
.


Description

Gas hydrate stability primarily depends upon
temperature Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
and
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and eve ...
, however other variables such as gas composition and ionic impurities in water influence stability boundaries. The existence and depth of a hydrate deposit is often indicated by the presence of a bottom-simulating reflector (BSR). A BSR is a
seismic reflection Reflection seismology (or seismic reflection) is a method of exploration geophysics that uses the principles of seismology to estimate the properties of the Earth's subsurface from reflected seismic waves. The method requires a controlled seismi ...
indicating the lower limit of hydrate stability in
sediments Sediment is a solid material that is transported to a new location where it is deposited. It occurs naturally and, through the processes of weathering and erosion, is broken down and subsequently sediment transport, transported by the action of ...
due to the different densities of hydrate saturated sediments, normal sediments and those containing free gas.


Limits

The upper and lower limits of the HSZ, as well as its thickness, depend upon the local conditions in which the hydrate occurs. The conditions for hydrate stability generally restrict natural deposits to polar regions and deep oceanic regions. In polar regions, due to low temperatures, the upper limit of the hydrate stability zone occurs at a depth of approximately 150
meters The metre (or meter in US spelling; symbol: m) is the base unit of length in the International System of Units (SI). Since 2019, the metre has been defined as the length of the path travelled by light in vacuum during a time interval of of ...
.1 The maximal depth of the hydrate stability zone is limited by the
geothermal gradient Geothermal gradient is the rate of change in temperature with respect to increasing depth in Earth's interior. As a general rule, the crust temperature rises with depth due to the heat flow from the much hotter mantle; away from tectonic plat ...
. Along continental margins the average thickness of the HSZ is about 500 m. The upper limit in oceanic sediments occurs when bottom water temperatures are at or near 0 
°C The degree Celsius is the unit of temperature on the Celsius temperature scale "Celsius temperature scale, also called centigrade temperature scale, scale based on 0 ° for the melting point of water and 100 ° for the boiling point ...
, and at a water depth of approximately 300 meters.1 The lower limit of the HSZ is bounded by the geothermal gradient. As depth below seafloor increases, the temperature eventually becomes too high for hydrates to exist. In areas of high geothermal heat flow, the lower limit of the HSZ may become shallower, therefore decreasing the thickness of the HSZ. Conversely, the thickest hydrate layers and widest HSZ are observed in areas of low geothermal heat flow. Generally, the maximum depth of HSZ extension is 2000 meters below the Earth's surface.1,3 Using the location of a BSR, as well as the pressure-temperature regimen necessary for hydrate stability, the HSZ may be used to determine geothermal gradients.2


Transport

If processes such as
sedimentation Sedimentation is the deposition of sediments. It takes place when particles in suspension settle out of the fluid in which they are entrained and come to rest against a barrier. This is due to their motion through the fluid in response to th ...
or
subduction Subduction is a geological process in which the oceanic lithosphere and some continental lithosphere is recycled into the Earth's mantle at the convergent boundaries between tectonic plates. Where one tectonic plate converges with a second p ...
transport hydrates below the lower limit of the HSZ, the hydrate becomes unstable and disassociates, releasing gas. This free gas may become trapped beneath the overlying hydrate layer, forming gas pockets, or reservoirs. The pressure from the presence of gas reservoirs impacts the stability of the hydrate layer. If this pressure is substantially changed, the stability of the methane layer above will be altered and may result in significant destabilization and disassociation of the hydrate deposit.
Landslides Landslides, also known as landslips, rockslips or rockslides, are several forms of mass wasting that may include a wide range of ground movements, such as rockfalls, mudflows, shallow or deep-seated slope failures and debris flows. Landslide ...
of rock or sediment above the hydrate stability zone may also impact the hydrate stability. A sudden decrease in pressure can release gasses or destabilize portions of the hydrate deposit. Changing atmospheric and oceanic temperatures may impact the presence and depth of the hydrate stability zone, however, is still uncertain to what extent. In oceanic sediments, increasing pressure due to a rise in sea level may offset some of the impact of increasing temperature upon the hydrate stability equilibrium.1


References

{{DEFAULTSORT:Gas Hydrate Stability Zone Clathrate hydrates Hydrates Hydrocarbons Methane Oceanographical terminology Physical oceanography