In mathematics, Galois rings are a type of
finite
Finite may refer to:
* Finite set, a set whose cardinality (number of elements) is some natural number
* Finite verb, a verb form that has a subject, usually being inflected or marked for person and/or tense or aspect
* "Finite", a song by Sara Gr ...
commutative ring
In mathematics, a commutative ring is a Ring (mathematics), ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring prope ...
s which generalize both the
finite field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), s ...
s and the
rings of integers modulo a
prime power
In mathematics, a prime power is a positive integer which is a positive integer power of a single prime number.
For example: , and are prime powers, while
, and are not.
The sequence of prime powers begins:
2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 1 ...
. A Galois ring is constructed from the ring
similar to how a finite field
is constructed from
. It is a
Galois extension
In mathematics, a Galois extension is an algebraic field extension ''E''/''F'' that is normal and separable; or equivalently, ''E''/''F'' is algebraic, and the field fixed by the automorphism group Aut(''E''/''F'') is precisely the base field ...
of
, when the concept of a Galois extension is generalized beyond the context of
field
Field may refer to:
Expanses of open ground
* Field (agriculture), an area of land used for agricultural purposes
* Airfield, an aerodrome that lacks the infrastructure of an airport
* Battlefield
* Lawn, an area of mowed grass
* Meadow, a grass ...
s.
Galois rings were studied by
Krull (1924), and independently by Janusz (1966) and by Raghavendran (1969), who both introduced the name ''Galois ring''. They are named after
Évariste Galois
Évariste Galois (; ; 25 October 1811 – 31 May 1832) was a French mathematician and political activist. While still in his teens, he was able to determine a necessary and sufficient condition for a polynomial to be solvable by Nth root, ...
, similar to ''Galois fields'', which is another name for finite fields. Galois rings have found applications in
coding theory
Coding theory is the study of the properties of codes and their respective fitness for specific applications. Codes are used for data compression, cryptography, error detection and correction, data transmission and computer data storage, data sto ...
, where certain codes are best understood as
linear code
In coding theory, a linear code is an error-correcting code for which any linear combination of Code word (communication), codewords is also a codeword. Linear codes are traditionally partitioned into block codes and convolutional codes, although t ...
s over
using Galois rings GR(4, ''r'').
Definition
A Galois ring is a commutative ring of
characteristic ''p''
''n'' which has ''p''
''nr'' elements, where ''p'' is prime and ''n'' and ''r'' are positive integers. It is usually denoted GR(''p''
''n'', ''r''). It can be defined as a
quotient ring
In ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring, difference ring or residue class ring, is a construction quite similar to the quotient group in group theory and to the quotient space in linear algebra. ...
:
where