GPX4
   HOME

TheInfoList



OR:

Glutathione peroxidase 4, also known as GPX4, is an
enzyme An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different mol ...
that in humans is encoded by the ''GPX4''
gene In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protei ...
. GPX4 is a phospholipid hydroperoxidase that protects cells against membrane
lipid peroxidation Lipid peroxidation, or lipid oxidation, is a complex chemical process that leads to oxidative degradation of lipids, resulting in the formation of peroxide and hydroperoxide derivatives.{{Cite journal , last1=Ayala , first1=Antonio , last2=Muñoz ...
.


Discovery

GPX4 was first discovered in biochemistry laboratories of the
University of Padua The University of Padua (, UNIPD) is an Italian public research university in Padua, Italy. It was founded in 1222 by a group of students and teachers from the University of Bologna, who previously settled in Vicenza; thus, it is the second-oldest ...
, where it was described as an enzyme capable of protecting against peroxidation. Its role as an inhibitor of cellular death was only discovered in 2012 by a research group
Columbia University Columbia University in the City of New York, commonly referred to as Columbia University, is a Private university, private Ivy League research university in New York City. Established in 1754 as King's College on the grounds of Trinity Churc ...
.


Function

The
antioxidant Antioxidants are Chemical compound, compounds that inhibit Redox, oxidation, a chemical reaction that can produce Radical (chemistry), free radicals. Autoxidation leads to degradation of organic compounds, including living matter. Antioxidants ...
enzyme glutathione peroxidase 4 (GPX4) belongs to the family of
glutathione peroxidase Glutathione peroxidase (GPx) () is the general name of an enzyme family with peroxidase activity whose main biological role is to protect the organism from oxidative damage. The biochemical function of glutathione peroxidase is to reduce lipid ...
s, which consists of 8 known mammalian isoenzymes (GPX1–8). GPX4 catalyzes the reduction of hydrogen peroxide, organic hydroperoxides, and lipid peroxides at the expense of reduced
glutathione Glutathione (GSH, ) is an organic compound with the chemical formula . It is an antioxidant in plants, animals, fungi, and some bacteria and archaea. Glutathione is capable of preventing damage to important cellular components caused by sources ...
and functions in the protection of cells against
oxidative stress Oxidative stress reflects an imbalance between the systemic manifestation of reactive oxygen species and a biological system's ability to readily detoxify the reactive intermediates or to repair the resulting damage. Disturbances in the normal ...
. The oxidized form of glutathione (
glutathione disulfide Glutathione disulfide (GSSG) is a disulfide derived from two glutathione molecules. In living cells, glutathione disulfide is reduced into two molecules of glutathione with reducing equivalents from the coenzyme NADPH. This reaction is catalyzed ...
), which is generated during the reduction of hydroperoxides by GPX4, is recycled by
glutathione reductase Glutathione reductase (GR) also known as glutathione-disulfide reductase (GSR) is an enzyme that in humans is encoded by the GSR gene. Glutathione reductase (EC 1.8.1.7) catalyzes the reduction of glutathione disulfide ( GSSG) to the sulfhydryl ...
and NADPH/H+. GPX4 differs from the other GPX family members in terms of its monomeric structure, a less restricted dependence on glutathione as reducing substrate, and the ability to reduce lipid-hydroperoxides inside biological membranes. Inactivation of GPX4 leads to an accumulation of lipid peroxides, resulting in ferroptotic cell death. Mutations in GPX4 cause spondylometaphyseal dysplasia. ''In vitro'' studies suggest that GPX4 protects cells against cold-induced cell death. Therapy-resistant cancer cells in a high-
mesenchymal Mesenchyme () is a type of loosely organized animal embryonic connective tissue of undifferentiated cells that give rise to most tissues, such as skin, blood, or bone. The interactions between mesenchyme and epithelium help to form nearly ever ...
state depend on a
lipid peroxidase Lipid peroxidation, or lipid oxidation, is a complex chemical process that leads to oxidative degradation of lipids, resulting in the formation of peroxide and hydroperoxide derivatives.{{Cite journal , last1=Ayala , first1=Antonio , last2=Muñoz ...
pathway to suppress ferroptosis, indicating a critical survival mechanism in this cellular context. Drug-tolerant persister cells exhibit a specific dependency on the lipid hydroperoxidase GPX4 for survival; inhibition of GPX4 induces ferroptotic cell death in these cells.


Structure

Mammalian
GPX1 Glutathione peroxidase 1, also known as GPx1, is an enzyme that in humans is encoded by the ''GPX1'' gene on chromosome 3. This gene encodes a member of the glutathione peroxidase family. Glutathione peroxidase functions in the detoxification of h ...
, GPX2, GPX3, and GPX4 (this protein) have been shown to be
selenium Selenium is a chemical element; it has symbol (chemistry), symbol Se and atomic number 34. It has various physical appearances, including a brick-red powder, a vitreous black solid, and a grey metallic-looking form. It seldom occurs in this elem ...
-containing enzymes, whereas GPX6 is a
selenoprotein In molecular biology a selenoprotein is any protein that includes a selenocysteine (Sec, U, Se-Cys) amino acid residue. Among functionally characterized selenoproteins are five glutathione peroxidases (GPX) and three thioredoxin reductases, (TrxR/TX ...
in humans with cysteine-containing homologues in rodents. In selenoproteins, the amino acid
selenocysteine Selenocysteine (symbol Sec or U, in older publications also as Se-Cys) is the 21st proteinogenic amino acid. Selenoproteins contain selenocysteine residues. Selenocysteine is an analogue of the more common cysteine with selenium in place of the ...
is inserted in the nascent polypeptide chain during the process of translational recoding of the UGA
stop codon In molecular biology, a stop codon (or termination codon) is a codon (nucleotide triplet within messenger RNA) that signals the termination of the translation process of the current protein. Most codons in messenger RNA correspond to the additio ...
. GPX4 shares the amino acid motif of selenocysteine, glutamine, and tryptophan (
catalytic triad A catalytic triad is a set of three coordinated amino acid residues that can be found in the active site of some enzymes. Catalytic triads are most commonly found in hydrolase and transferase enzymes (e.g. proteases, amidases, esterases, aminoac ...
) with other glutathione peroxidases.


Reaction mechanism

GPX4 catalyzes the following reaction: * 2
glutathione Glutathione (GSH, ) is an organic compound with the chemical formula . It is an antioxidant in plants, animals, fungi, and some bacteria and archaea. Glutathione is capable of preventing damage to important cellular components caused by sources ...
+
lipid Lipids are a broad group of organic compounds which include fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), monoglycerides, diglycerides, phospholipids, and others. The functions of lipids include storing ...
hydroperoxide Hydroperoxides or peroxols are Chemical compound, compounds of the form ROOH, where R stands for any group, typically Organic compound, organic, which contain the hydroperoxy functional group (). Hydroperoxide also refers to the hydroperoxide anio ...
glutathione disulfide Glutathione disulfide (GSSG) is a disulfide derived from two glutathione molecules. In living cells, glutathione disulfide is reduced into two molecules of glutathione with reducing equivalents from the coenzyme NADPH. This reaction is catalyzed ...
+ lipid–alcohol + H2O This reaction occurs at the selenocysteine within the catalytic center of GPX4. During the catalytic cycle of GPX4, the active selenol (-SeH) is oxidized by peroxides to selenenic acid (-SeOH), which is then reduced with glutathione (GSH) to an intermediate selenodisulfide (-Se-SG). GPX4 is eventually reactivated by a second glutathione molecule, releasing glutathione disulfide (GS-SG).


Subcellular distribution of isoforms

In mouse and rat, three distinct GPX4 isoforms with different subcellular localization are produced through alternative splicing and transcription initiation; cytosolic GPX4, mitochondrial GPX4 (mGPX4), and nuclear GPX4 (nGPX4). Cytosolic GPX4 has been identified as the only GPX4 isoform being essential for embryonic development and cell survival. The GPX4 isoforms mGPX4 and nGPX4 have been implicated in
spermatogenesis Spermatogenesis is the process by which haploid spermatozoa develop from germ cells in the seminiferous tubules of the testicle. This process starts with the Mitosis, mitotic division of the stem cells located close to the basement membrane of ...
and male fertility. In humans, experimental evidence for alternative splicing exists; alternative transcription initiation and the cleavage sites of the mitochondrial and nuclear transit peptides need to be experimentally verified.


Animal models

Knockout mice A knockout mouse, or knock-out mouse, is a genetically modified mouse (''Mus musculus'') in which researchers have inactivated, or " knocked out", an existing gene by replacing it or disrupting it with an artificial piece of DNA. They are importan ...
of GPX4 die at embryonic day 8 and conditional inducible deletion in adult mice (neurons) results in degeneration and death in less than a month. Targeted disruption of the mitochondrial GPX4 isoform (mGPX4) caused infertility in male mice and disruption of the nuclear GPX4 isoform (nGPX4) reduced the structural stability of sperm chromatin, yet both knockout mouse models (for mGPX4 and nGPX4) were fully viable. Surprisingly, knockout of GPX4 heterozygously in mice (GPX4+/−) increases their median life span. Knockout studies with GPX1, GPX2, or GPX3 deficient mice showed that cytosolic GPX4 is so far the only glutathione peroxidase that is indispensable for embryonic development and cell survival. As mechanisms to dispose of both
hydrogen peroxide Hydrogen peroxide is a chemical compound with the formula . In its pure form, it is a very pale blue liquid that is slightly more viscosity, viscous than Properties of water, water. It is used as an oxidizer, bleaching agent, and antiseptic, usua ...
and lipid hydroperoxides are essential to life, this indicates that in contrast to the multiple metabolic pathways that can be utilized to dispose of
hydrogen peroxide Hydrogen peroxide is a chemical compound with the formula . In its pure form, it is a very pale blue liquid that is slightly more viscosity, viscous than Properties of water, water. It is used as an oxidizer, bleaching agent, and antiseptic, usua ...
, pathways for the disposal of lipid hydroperoxides are limited. While mammals have only one copy of the GPX4 gene, fish have two copies, GPX4a and GPX4b. The GPX4's appear to play a greater role in the fish GPX system than in mammals. For example, in fish GPX4 activity contributes to a greater extent to total GPX activity, GPX4a is the most highly expressed selenoprotein mRNA (in contrast to mammals where it is GPX1 mRNA) and GPX4a appears to be highly inducible to changes within the cellular environment, such as changes in
methylmercury Methylmercury is an organometallic cation with the formula . It is the simplest organomercury compound. Methylmercury is extremely toxic, and its derivatives are the major source of organic mercury for humans. It is a bioaccumulative environment ...
and selenium status.


Pathology

The interaction of GPX4 with the autophagic degradation pathway further modulates cell's response to oxidative stress. Impaired GPX4 function plays a role in tumorigenesis, neurodegeneration, infertility, inflammation, immune disorders, and ischemia-reperfusion injury. Additionally, the R152H mutation in GPX4 is involved in the development of Sedaghatian-type spinal metaphyseal dysplasia, a rare and fatal disease in newborn babies.


References


Further reading

* * * * * * * * * * * * * * * * * * *


External links

* {{DEFAULTSORT:Gpx4 EC 1.11.1 Selenoproteins