Fusion adaptive resonance theory (fusion ART) is a generalization of self-organizing
neural networks
A neural network is a network or circuit of biological neurons, or, in a modern sense, an artificial neural network, composed of artificial neurons or nodes. Thus, a neural network is either a biological neural network, made up of biological ...
known as the original
Adaptive Resonance Theory Adaptive resonance theory (ART) is a theory developed by Stephen Grossberg and Gail Carpenter on aspects of how the brain processes information. It describes a number of neural network models which use supervised and unsupervised learning method ...
[Carpenter, G.A. & Grossberg, S. (2003)]
Adaptive Resonance Theory
, In Michael A. Arbib
Michael Anthony Arbib (born May 28, 1940) is an American computational neuroscientist. He is an Adjunct Professor of Psychology at the University of California at San Diego and professor emeritus at the University of Southern California; before ...
(Ed.), The Handbook of Brain Theory and Neural Networks, Second Edition (pp. 87-90). Cambridge, MA: MIT Press models for learning recognition categories across multiple pattern channels. There is a separate stream of work on fusion ARTMAP,
[Y.R. Asfour, G.A. Carpenter, S. Grossberg, and G.W. Lesher. (1993) Fusion ARTMAP: an adaptive fuzzy network for multi-channel classification. In Proceedings of the Third International Conference on Industrial Fuzzy Control and Intelligent Systems (IFIS).][R.F. Harrison and J.M. Borges. (1995) Fusion ARTMAP: Clarification, Implementation and Developments. Research Report No. 589, Department of Automatic Control and Systems Engineering, The University of Sheffield.] that extends fuzzy ARTMAP consisting of two fuzzy ART modules connected by an inter-ART map field to an extended architecture consisting of multiple ART modules.
Fusion ART unifies a number of neural model designs and supports a myriad of learning paradigms, notably
unsupervised learning
Unsupervised learning is a type of algorithm that learns patterns from untagged data. The hope is that through mimicry, which is an important mode of learning in people, the machine is forced to build a concise representation of its world and t ...
, supervised learning,
reinforcement learning
Reinforcement learning (RL) is an area of machine learning concerned with how intelligent agents ought to take actions in an environment in order to maximize the notion of cumulative reward. Reinforcement learning is one of three basic machine ...
,
multimodal learning, and sequence learning. In addition, various extensions have been developed for
domain knowledge
Domain knowledge is knowledge of a specific, specialized discipline or field, in contrast to general (or domain-independent) knowledge. The term is often used in reference to a more general discipline—for example, in describing a software eng ...
integration, memory representation, and modelling of high level cognition.
Overview
Fusion ART is a natural extension of the original adaptive resonance theory (ART)
[Grossberg, S. (1987), Competitive learning: From interactive activation to adaptive resonance, Cognitive Science (Publication), 11, 23-63] models developed by
Stephen Grossberg
Stephen Grossberg (born December 31, 1939) is a cognitive scientist, theoretical and computational psychologist, neuroscientist, mathematician, biomedical engineer, and neuromorphic technologist. He is the Wang Professor of Cognitive and Neu ...
and
Gail A. Carpenter from a single pattern field to multiple pattern channels. Whereas the original ART models perform unsupervised learning of recognition nodes in response to incoming input patterns, fusion ART learns multi-channel mappings simultaneously across multi-modal pattern channels in an
online
In computer technology and telecommunications, online indicates a state of connectivity and offline indicates a disconnected state. In modern terminology, this usually refers to an Internet connection, but (especially when expressed "on line" o ...
and
incremental
Increment or incremental may refer to:
*Incrementalism, a theory (also used in politics as a synonym for gradualism)
*Increment and decrement operators, the operators ++ and -- in computer programming
*Incremental computing
*Incremental backup, wh ...
manner.
The learning model
Fusion ART employs a multi-channel architecture (as shown below), comprising a category field
connected to a fixed number of (''K'') pattern channels or input fields
through bidirectional conditionable pathways. The model unifies a number of network designs, most notably Adaptive Resonance Theory (ART), Adaptive Resonance Associative Map (ARAM)
and Fusion Architecture for Learning and COgNition (FALCON),
developed over the past decades for a wide range of functions and applications.

Given a set of multimodal patterns, each presented at a pattern channel, the fusion ART pattern encoding cycle comprises five key stages, namely code activation, code competition, activity readout, template matching, and template learning, as described below.
* Code activation: Given the input activity vectors
, one for each input field
, the choice function
of each
node ''j'' is computed based on the combined overall similarity between the input patterns and the corresponding weight
vectors .
* Code competition: A code competition process follows under which the
node with the highest choice function value is identified. The winner is indexed at ''J'' where
is the maximum among all
nodes. This indicates a winner-take-all strategy.
* Activity readout: During
memory recall
Recall in memory refers to the mental process of retrieval of information from the past. Along with encoding and storage, it is one of the three core processes of memory. There are three main types of recall: free recall, cued recall and serial ...
, the chosen
node ''J'' performs a read out of its weight vectors to the input fields
.
* Template matching: Before the activity readout is stabilized and node ''J'' can be used for learning, a template matching process checks that the weight templates of node ''J'' are sufficiently close to their respective input patterns. Specifically, resonance occurs if for each channel ''k'', the ''match function'' of the chosen node ''J'' meets its vigilance criterion. If any of the
vigilance
Vigilance may refer to:
* Alertness
* Vigilance, a creature ability in the ''Magic: The Gathering'' collectible card game
* ''Vigilance'' (album), by Threat Signal
* Vigilance (behavioural ecology), the watchfulness of prey for nearby predator ...
constraints is violated, mismatch reset occurs in which the value of the
choice function
A choice function (selector, selection) is a mathematical function ''f'' that is defined on some collection ''X'' of nonempty sets and assigns some element of each set ''S'' in that collection to ''S'' by ''f''(''S''); ''f''(''S'') maps ''S'' to ...
is set to 0 for the duration of the input presentation. Using a ''match tracking'' process, at the beginning of each input presentation, the vigilance parameter in each channel ''ck'' equals a baseline vigilance. When a mismatch reset occurs, the vigilance of all pattern channels are increased simultaneously until one of them is slightly larger than its corresponding match function, causing a reset. The search process then selects another
node ''J'' under the revised vigilance criterion until a resonance is achieved.
* Template learning: Once a resonance occurs, for each channel ''ck'', the weight vector
is modified according to a learning rule which moves it towards the input pattern. When an uncommitted node is selected for learning, it becomes ''committed'' and a new uncommitted node is added to the
field. Fusion ART thus expands its network architecture dynamically in response to the input patterns.
Types of fusion ART
The network dynamics described above can be used to support numerous learning operations. We show how fusion ART can be used for a variety of traditionally distinct learning tasks in the subsequent sections.
Original ART models
With a single pattern channel, the fusion ART architecture reduces to the original ART model. Using a selected vigilance value ρ, an ART model learns a set of recognition nodes in response to an incoming stream of input patterns in a continuous manner. Each recognition node in the
field learns to encode a template pattern representing the key characteristics of a set of patterns. ART has been widely used in the context of
unsupervised learning
Unsupervised learning is a type of algorithm that learns patterns from untagged data. The hope is that through mimicry, which is an important mode of learning in people, the machine is forced to build a concise representation of its world and t ...
for discovering pattern groupings.
Adaptive resonance associative map
By
synchronizing
Synchronization is the coordination of events to operate a system in unison. For example, the conductor of an orchestra keeps the orchestra synchronized or ''in time''. Systems that operate with all parts in synchrony are said to be synchronou ...
pattern coding across multiple pattern channels, fusion ART learns to encode associative mappings across distinct pattern spaces. A specific instance of fusion ART with two pattern channels is known as adaptive resonance associative map (ARAM), that learns multi-dimensional supervised mappings from one pattern space to another pattern space. An ARAM system consists of an input field
, an output field
, and a category field
. Given a set of feature vectors presented at
with their corresponding class vectors presented at
, ARAM learns a predictive model (encoded by the recognition nodes in
) that associates combinations of key features to their respective classes.
Fuzzy ARAM, based on fuzzy ART operations, has been successfully applied to numerous machine learning tasks, including personal profiling, document classification, personalized content management, and
DNA gene expression analysis. In many benchmark experiments, ARAM has demonstrated predictive performance superior to those of many state-of-the-art machine learning systems, including C4.5, Backpropagation Neural Network,
K Nearest Neighbour, and
Support Vector Machines
In machine learning, support vector machines (SVMs, also support vector networks) are supervised learning models with associated learning algorithms that analyze data for classification and regression analysis. Developed at AT&T Bell Laboratories ...
.
Fusion ART with domain knowledge
During learning, fusion ART formulates recognition categories of input patterns across multiple channels. The knowledge that fusion ART discovers during learning, is compatible with symbolic rule-based representation. Specifically, the recognition categories learned by the
category nodes are compatible with a class of IF-THEN rules that maps a set of input attributes (antecedents) in one pattern channel to a disjoint set of output attributes (
consequents) in another channel. Due to this compatibility, at any point of the
incremental learning process, instructions in the form of IF-THEN rules can be readily translated into the recognition categories of a fusion ART system. The rules are conjunctive in the sense that the attributes in the
IF clause and in the THEN clause have an ''AND'' relationship. Augmenting a fusion ART network with domain knowledge through
explicit instructions serves to improve learning efficiency and predictive accuracy.
The fusion ART rule insertion strategy is similar to that used in Cascade ARTMAP, a generalization of ARTMAP that performs domain knowledge insertion, refinement, and extraction.
For direct knowledge insertion, the IF and THEN clauses of each instruction (rule) is translated into a pair of vectors A and B respectively. The vector pairs derived are then used
as training patterns for inserting into a fusion ART network. During rule insertion, the vigilance parameters are set to 1s to ensure that each distinct rule is encoded by one category node.
Fusion architecture for learning and cognition (FALCON)
Reinforcement learning is a paradigm wherein an
autonomous
In developmental psychology and moral, political, and bioethical philosophy, autonomy, from , ''autonomos'', from αὐτο- ''auto-'' "self" and νόμος ''nomos'', "law", hence when combined understood to mean "one who gives oneself one's ...
system learns to adjust its behaviour based on reinforcement signals received from the environment. An instance of fusion ART, known as FALCON (fusion architecture for learning and cognition), learns mappings simultaneously across multi-modal input patterns, involving states, actions, and rewards, in an
online
In computer technology and telecommunications, online indicates a state of connectivity and offline indicates a disconnected state. In modern terminology, this usually refers to an Internet connection, but (especially when expressed "on line" o ...
and
incremental
Increment or incremental may refer to:
*Incrementalism, a theory (also used in politics as a synonym for gradualism)
*Increment and decrement operators, the operators ++ and -- in computer programming
*Incremental computing
*Incremental backup, wh ...
manner. Compared with other ART-based reinforcement learning systems, FALCON presents a truly
integrated solution in the sense that there is no implementation of a separate reinforcement learning module or
Q-value table. Using competitive coding as the underlying principle of computation, the network dynamics encompasses several learning
paradigms, including unsupervised learning, supervised learning, as well as reinforcement learning.
FALCON employs a three-channel architecture, comprising a category field
and three pattern fields, namely a sensory field
for representing current states, a motor field
for representing actions, and a feedback field
for representing reward values. A class of FALCON networks, known as TD-FALCON
,incorporates Temporal Difference (TD) methods to estimate and learn value function ''Q(s,a)'', that indicates the goodness to take a certain action ''a'' in a given state ''s''.
The general sense-act-learn
algorithm
In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing ...
for TD-FALCON is summarized. Given the current state ''s'', the FALCON network is used to predict the value of performing each available action ''a'' in the action set A based on the corresponding state vector
and action vector
. The value functions are then processed by an action selection strategy (also known as policy) to select an action. Upon receiving a feedback (if any) from the environment after performing the
action, a TD formula is used to compute a new estimate of the Q-value for performing the chosen action in the current state. The new Q-value is then used as the teaching signal (represented as reward vector R) for FALCON to learn the association of the current state and the chosen action to the estimated value.
References
{{reflist
Theories