Frank Werblin is Professor of the Graduate School, Division of Neurobiology, at the
University of California, Berkeley
The University of California, Berkeley (UC Berkeley, Berkeley, Cal, or California), is a Public university, public Land-grant university, land-grant research university in Berkeley, California, United States. Founded in 1868 and named after t ...
.
Education
Werblin earned his Ph.D. at
Johns Hopkins University
The Johns Hopkins University (often abbreviated as Johns Hopkins, Hopkins, or JHU) is a private university, private research university in Baltimore, Maryland, United States. Founded in 1876 based on the European research institution model, J ...
studying with Professor
John Dowling. He was a
Guggenheim Fellow
Guggenheim Fellowships are grants that have been awarded annually since by the John Simon Guggenheim Memorial Foundation, endowed by the late Simon and Olga Hirsh Guggenheim. These awards are bestowed upon individuals who have demonstrated d ...
, and is noted for discovering the functional and morphological properties of the main retinal neural cell types underlying visual information processing in the
retina
The retina (; or retinas) is the innermost, photosensitivity, light-sensitive layer of tissue (biology), tissue of the eye of most vertebrates and some Mollusca, molluscs. The optics of the eye create a focus (optics), focused two-dimensional ...
and for developing the retina slice preparation that is now used universally by retinal researchers.
Career
In 1969, Werblin and Dowling published their seminal studies of the
response properties of all the major
neuron
A neuron (American English), neurone (British English), or nerve cell, is an membrane potential#Cell excitability, excitable cell (biology), cell that fires electric signals called action potentials across a neural network (biology), neural net ...
types in the vertebrate retina. This paper described, for the first time, the connections between all the major types of retina neurons and showed how interactions between these neurons created the visual code that was sent via the optic nerve to the brain. To accomplish this, the authors combined information about the electrical responses of the neurons with anatomical connectivity uncovered by electron microscopic identification of the neural pathways. The
micropipette used to record from each cell contained a dye so that each physiologically identified cell could also be morphologically characterized within the layers of the retina. In 1978, Werblin published the first study of an isolated retinal slice preparation. Werblin invented and developed a clever slicing procedure that allowed for a quicker and easier means to access all of the neurons in the various layers of the retina, while leaving the cells largely intact with their supporting matrix and synaptic connections and electrical junctions. This allowed, the researcher for the first time to target specific neurons in the retina for electrical recording. However, because the retinal slice was isolated from the supportive
retinal pigment epithelium
The pigmented layer of retina or retinal pigment epithelium (RPE) is the pigment
A pigment is a powder used to add or alter color or change visual appearance. Pigments are completely or nearly solubility, insoluble and reactivity (chemistry), ...
(PE) that enables the light responses of
photoreceptors, light evoked responses were not reported until the retinal slices were constructed with PE still attached. In this manner, whole cell patch recording of
amacrine neurons in the salamander retina allowed light evoked
excitatory post-synaptic currents (EPSCs) to be measured for the first time, as well as their light elicited spiking potentials, and voltage-gated currents. The new slice technique allowed, for the first time, a neuron to be characterized by its natural stimulus (light), and then to be fully characterized by its
morphological, histological, electrophysiological (EPSCs, voltage gated currents, and graded and spike potentials), and chemical identity. The new light-responsive slice methodology also allowed interplexiform cells to be identified and characterized for the first time, as well as sustained and transient amacrine neurons. Precise localization of synaptic inputs to the cell, and localization of functional receptors in the cell was achieved. The slice technique would become a standard for retinal research and be developed for other animals with much smaller neurons, including the
Zebrafish
The zebrafish (''Danio rerio'') is a species of freshwater ray-finned fish belonging to the family Danionidae of the order Cypriniformes. Native to South Asia, it is a popular aquarium fish, frequently sold under the trade name zebra danio (an ...
and rat. Werblin would then use these data to construct elegant models of visual information processing in the different layers of the retina.
In 1990 Werblin was honored with the Friedenwald Award from the ARVO organization. In 2017, Werblin received the
Pepose Award in Vision Science from
Brandeis University
Brandeis University () is a Private university, private research university in Waltham, Massachusetts, United States. It is located within the Greater Boston area. Founded in 1948 as a nonsectarian, non-sectarian, coeducational university, Bra ...
.
Werblin is also the inventor of Visionize a device/software that uses a smartphone to remap the visual world to help low-vision patients regain visual function. With this gained facility, patients who were functionally blind regain sight and re-enter the world of the sighted, recognizing faces, shopping at supermarkets, going to theater and sports events..
Werblin is also a Co-Founder, Chief Scientist of IrisVision, a more advanced technology device that connects clinicians with patients remotely through a portable vision laboratory that is located in the patient's home and controlled remotely by the clinician. Clinics can serve patients .
Selected publications
*
*
*
References
{{DEFAULTSORT:Werblin, Frank
Living people
Year of birth missing (living people)
American neuroscientists
Johns Hopkins University alumni
University of California, Berkeley faculty
20th-century American academics
21st-century American academics