Strength
Types
There are two types of fractures: brittle and ductile fractures respectively without or with plastic deformation prior to failure.Brittle
Ductile
In ductile fracture, extensive plastic deformation ( necking) takes place before fracture. The terms "rupture" and "ductile rupture" describe the ultimate failure of ductile materials loaded in tension. The extensive plasticity causes the crack to propagate slowly due to the absorption of a large amount of energy before fracture.Characteristics
The manner in which a crack propagates through a material gives insight into the mode of fracture. With ductile fracture a crack moves slowly and is accompanied by a large amount of plastic deformation around the crack tip. A ductile crack will usually not propagate unless an increased stress is applied and generally cease propagating when loading is removed. In a ductile material, a crack may progress to a section of the material where stresses are slightly lower and stop due to the blunting effect of plastic deformations at the crack tip. On the other hand, with brittle fracture, cracks spread very rapidly with little or no plastic deformation. The cracks that propagate in a brittle material will continue to grow once initiated. Crack propagation is also categorized by the crack characteristics at the microscopic level. A crack that passes through the grains within the material is undergoing transgranular fracture. A crack that propagates along the grain boundaries is termed an intergranular fracture. Typically, the bonds between material grains are stronger at room temperature than the material itself, so transgranular fracture is more likely to occur. When temperatures increase enough to weaken the grain bonds, intergranular fracture is the more common fracture mode.Testing
Fracture in materials is studied and quantified in multiple ways. Fracture is largely determined by the fracture toughness (), so fracture testing is often done to determine this. The two most widely used techniques for determining fracture toughness are the three-point flexural test and the compact tension test. By performing the compact tension and three-point flexural tests, one is able to determine the fracture toughness through the following equation: : Where: : is an empirically-derived equation to capture the test sample geometry : is the fracture stress, and : is the crack length. To accurately attain , the value of must be precisely measured. This is done by taking the test piece with its fabricated notch of length and sharpening this notch to better emulate a crack tip found in real-world materials.An improved semi-analytical solution for stress at round-tip notchesCeramics and inorganic glasses
Ceramics and inorganic glasses have fracturing behavior that differ those of metallic materials. Ceramics have high strengths and perform well in high temperatures due to the material strength being independent of temperature. Ceramics have low toughness as determined by testing under a tensile load; often, ceramics have values that are ~5% of that found in metals. However, as demonstrated by Faber and Evans, fracture toughness can be predicted and improved with crack deflection around second phase particles. Ceramics are usually loaded in compression in everyday use, so the compressive strength is often referred to as the strength; this strength can often exceed that of most metals. However, ceramics are brittle and thus most work done revolves around preventing brittle fracture. Due to how ceramics are manufactured and processed, there are often preexisting defects in the material introduce a high degree of variability in the Mode I brittle fracture. Thus, there is a probabilistic nature to be accounted for in the design of ceramics. The Weibull distribution predicts the survival probability of a fraction of samples with a certain volume that survive a tensile stress sigma, and is often used to better assess the success of a ceramic in avoiding fracture.Fiber bundles
To model fracture of a bundle of fibers, the Fiber Bundle Model was introduced by Thomas Pierce in 1926 as a model to understand the strength of composite materials. The bundle consists of a large number of parallel Hookean springs of identical length and each having identical spring constants. They have however different breaking stresses. All these springs are suspended from a rigid horizontal platform. The load is attached to a horizontal platform, connected to the lower ends of the springs. When this lower platform is absolutely rigid, the load at any point of time is shared equally (irrespective of how many fibers or springs have broken and where) by all the surviving fibers. This mode of load-sharing is called Equal-Load-Sharing mode. The lower platform can also be assumed to have finite rigidity, so that local deformation of the platform occurs wherever springs fail and the surviving neighbor fibers have to share a larger fraction of that transferred from the failed fiber. The extreme case is that of local load-sharing model, where load of the failed spring or fiber is shared (usually equally) by the surviving nearest neighbor fibers.Disasters
Failures caused by brittle fracture have not been limited to any particular category of engineered structure. Though brittle fracture is less common than other types of failure, the impacts to life and property can be more severe. The following notable historic failures were attributed to brittle fracture: * Pressure vessels: Great Molasses Flood in 1919, New Jersey molasses tank failure in 1973 * Bridges: King Street Bridge span collapse in 1962, Silver Bridge collapse in 1967, partial failure of thComputational fracture mechanics
Virtually every area of engineering has been significantly impacted by computers, and fracture mechanics is no exception. Since there are so few actual problems with closed-form analytical solutions, numerical modelling has become an essential tool in fracture analysis. There are literally hundreds of configurations for which stress-intensity solutions have been published, the majority of which were derived from numerical models. The J integral and crack-tip-opening displacement (CTOD) calculations are two more increasingly popular elastic-plastic studies. Additionally, experts are using cutting-edge computational tools to study unique issues such ductile crack propagation, dynamic fracture, and fracture at interfaces. The exponential rise in computational fracture mechanics applications is essentially the result of quick developments in computer technology. Most used computational numerical methods are finite element and boundary integral equation methods. Other methods include stress and displacement matching, element crack advance in which latter two come under Traditional Methods in Computational Fracture Mechanics.The finite element method
The structures are divided into discrete elements of 1-D beam, 2-D plane stress or plane strain, 3-D bricks or tetrahedron types. The continuity of the elements are enforced using the nodes.The boundary integral equation method
In this method, the surface is divided into two regions: a region where displacements are specified Su and region with tractions are specified ST . With given boundary conditions, the stresses, strains, and displacements within the body can all theoretically be solved for, along with the tractions on Su and the displacements on ST. It is a very powerful technique to find the unknown tractions and displacements.Traditional methods in computational fracture mechanics
These methods are used to determine the fracture mechanics parameters using numerical analysis. Some of the traditional methods in computational fracture mechanics, which were commonly used in the past, have been replaced by newer and more advanced techniques. The newer techniques are considered to be more accurate and efficient, meaning they can provide more precise results and do so more quickly than the older methods. Not all traditional methods have been completely replaced, as they can still be useful in certain scenarios, but they may not be the most optimal choice for all applications. Some of the traditional methods in computational fracture mechanics are: * Stress and displacement matching * Elemental crack advance * Contour integration * Virtual crack extensionSee also
* Environmental stress cracking * Environmental stress fracture * Fatigue (material) * Forensic engineering * Forensic materials engineering * Fractography *Notes
References
Further reading
* Dieter, G. E. (1988) ''Mechanical Metallurgy'' * A. Garcimartin, A. Guarino, L. Bellon and S. Cilberto (1997) "Statistical Properties of Fracture Precursors". Physical Review Letters, 79, 3202 (1997) * Callister Jr., William D. (2002) ''Materials Science and Engineering: An Introduction.'' * Peter Rhys Lewis, Colin Gagg, Ken Reynolds, CRC Press (2004), ''Forensic Materials Engineering: Case Studies''.External links