HOME

TheInfoList



OR:

In the
theory of relativity The theory of relativity usually encompasses two interrelated physics theories by Albert Einstein: special relativity and general relativity, proposed and published in 1905 and 1915, respectively. Special relativity applies to all physical ph ...
, four-acceleration is a
four-vector In special relativity, a four-vector (or 4-vector, sometimes Lorentz vector) is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vect ...
(vector in four-dimensional
spacetime In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualiz ...
) that is analogous to classical
acceleration In mechanics, acceleration is the Rate (mathematics), rate of change of the velocity of an object with respect to time. Acceleration is one of several components of kinematics, the study of motion. Accelerations are Euclidean vector, vector ...
(a three-dimensional vector, see three-acceleration in special relativity). Four-acceleration has applications in areas such as the annihilation of
antiproton The antiproton, , (pronounced ''p-bar'') is the antiparticle of the proton. Antiprotons are stable, but they are typically short-lived, since any collision with a proton will cause both particles to be annihilated in a burst of energy. The exis ...
s, resonance of strange particles and radiation of an accelerated charge.


Four-acceleration in inertial coordinates

In inertial coordinates in
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between Spacetime, space and time. In Albert Einstein's 1905 paper, Annus Mirabilis papers#Special relativity, "On the Ele ...
, four-acceleration \mathbf is defined as the rate of change in
four-velocity In physics, in particular in special relativity and general relativity, a four-velocity is a four-vector in four-dimensional spacetime In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three ...
\mathbf with respect to the particle's
proper time In relativity, proper time (from Latin, meaning ''own time'') along a timelike world line is defined as the time as measured by a clock following that line. The proper time interval between two events on a world line is the change in proper time ...
along its worldline. We can say: \begin \mathbf = \frac &= \left(\gamma_u\dot\gamma_u c,\, \gamma_u^2\mathbf a + \gamma_u\dot\gamma_u\mathbf u\right) \\ &= \left( \gamma_u^4\frac,\, \gamma_u^2\mathbf + \gamma_u^4\frac\mathbf \right) \\ &= \left( \gamma_u^4\frac,\, \gamma_u^4\left(\mathbf + \frac\right) \right), \end where * \mathbf a = \frac , with \mathbf a the three-acceleration and \mathbf u the three-velocity, and * \dot\gamma_u = \frac \gamma_u^3 = \frac \frac, and * \gamma_u is the
Lorentz factor The Lorentz factor or Lorentz term (also known as the gamma factor) is a dimensionless quantity expressing how much the measurements of time, length, and other physical properties change for an object while it moves. The expression appears in sev ...
for the speed u (with , \mathbf, = u). A dot above a variable indicates a derivative with respect to the coordinate time in a given reference frame, not the proper time \tau (in other terms, \dot\gamma_u = \frac). In an instantaneously co-moving inertial reference frame \mathbf u = 0, \gamma_u = 1 and \dot\gamma_u = 0, i.e. in such a reference frame \mathbf = \left(0, \mathbf a\right) . Geometrically, four-acceleration is a curvature vector of a worldline. Therefore, the magnitude of the four-acceleration (which is an invariant scalar) is equal to the
proper acceleration In relativity theory, proper acceleration is the physical acceleration (i.e., measurable acceleration as by an accelerometer) experienced by an object. It is thus acceleration relative to a free-fall, or inertial, observer who is momentarily at ...
that a moving particle "feels" moving along a worldline. A worldline having constant four-acceleration is a Minkowski-circle i.e. hyperbola (see ''hyperbolic motion'') The
scalar product In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a scalar as a result". It is also used for other symmetric bilinear forms, for example in a pseudo-Euclidean space. Not to be confused wit ...
of a particle's
four-velocity In physics, in particular in special relativity and general relativity, a four-velocity is a four-vector in four-dimensional spacetime In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three ...
and its four-acceleration is always 0. Even at relativistic speeds four-acceleration is related to the
four-force In the special theory of relativity, four-force is a four-vector that replaces the classical force. In special relativity The four-force is defined as the rate of change in the four-momentum of a particle with respect to the particle's proper t ...
: F^\mu = m A^\mu , where is the
invariant mass The invariant mass, rest mass, intrinsic mass, proper mass, or in the case of bound systems simply mass, is the portion of the total mass of an object or system of objects that is independent of the overall motion of the system. More precisely, ...
of a particle. When the
four-force In the special theory of relativity, four-force is a four-vector that replaces the classical force. In special relativity The four-force is defined as the rate of change in the four-momentum of a particle with respect to the particle's proper t ...
is zero, only gravitation affects the trajectory of a particle, and the four-vector equivalent of Newton's second law above reduces to the
geodesic equation In geometry, a geodesic () is a curve representing in some sense the locally shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a conn ...
. The four-acceleration of a particle executing geodesic motion is zero. This corresponds to gravity not being a force. Four-acceleration is different from what we understand by acceleration as defined in Newtonian physics, where gravity is treated as a force.


Four-acceleration in non-inertial coordinates

In non-inertial coordinates, which include accelerated coordinates in special relativity and all coordinates in
general relativity General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
, the acceleration four-vector is related to the
four-velocity In physics, in particular in special relativity and general relativity, a four-velocity is a four-vector in four-dimensional spacetime In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three ...
through an absolute derivative with respect to proper time. A^\lambda := \frac = \frac + \Gamma^\lambda _U^\mu U^\nu In inertial coordinates the
Christoffel symbols In mathematics and physics, the Christoffel symbols are an array of numbers describing a metric connection. The metric connection is a specialization of the affine connection to surface (topology), surfaces or other manifolds endowed with a metri ...
\Gamma^\lambda _ are all zero, so this formula is compatible with the formula given earlier. In special relativity the coordinates are those of a rectilinear inertial frame, so the
Christoffel symbols In mathematics and physics, the Christoffel symbols are an array of numbers describing a metric connection. The metric connection is a specialization of the affine connection to surface (topology), surfaces or other manifolds endowed with a metri ...
term vanishes, but sometimes when authors use curved coordinates in order to describe an accelerated frame, the frame of reference isn't inertial, they will still describe the physics as special relativistic because the metric is just a frame transformation of the
Minkowski space In physics, Minkowski space (or Minkowski spacetime) () is the main mathematical description of spacetime in the absence of gravitation. It combines inertial space and time manifolds into a four-dimensional model. The model helps show how a ...
metric. In that case this is the expression that must be used because the
Christoffel symbols In mathematics and physics, the Christoffel symbols are an array of numbers describing a metric connection. The metric connection is a specialization of the affine connection to surface (topology), surfaces or other manifolds endowed with a metri ...
are no longer all zero.


See also

*
Four-vector In special relativity, a four-vector (or 4-vector, sometimes Lorentz vector) is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vect ...
*
Four-velocity In physics, in particular in special relativity and general relativity, a four-velocity is a four-vector in four-dimensional spacetime In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three ...
*
Four-momentum In special relativity, four-momentum (also called momentum–energy or momenergy) is the generalization of the classical three-dimensional momentum to four-dimensional spacetime. Momentum is a vector in three dimensions; similarly four-momentum i ...
*
Four-force In the special theory of relativity, four-force is a four-vector that replaces the classical force. In special relativity The four-force is defined as the rate of change in the four-momentum of a particle with respect to the particle's proper t ...
* Four-gradient *
Proper acceleration In relativity theory, proper acceleration is the physical acceleration (i.e., measurable acceleration as by an accelerometer) experienced by an object. It is thus acceleration relative to a free-fall, or inertial, observer who is momentarily at ...


References

* * *


External links


Curvature vector
on Britannica {{DEFAULTSORT:Four-Acceleration Four-vectors Acceleration