Behavior
Eusociality
''Formica polyctena'' like manyWorker sterility
Workers in ant colonies are typically sterile females that do not reproduce. ''F. polyctena'' is consistent with this model, with almost completely sterile workers that do not lay eggs. This is in contrast to other ''Formica'' species that have workers that actually do reproduce, disrupting the eusocial system. ''F. polyctena’s'' high proportion of worker sterility indicates a strict obligate polygynous colony structure that most likely allows for a stable unicoloniality, or the cooperation of several nests. In other words, workers do not have the ability to disrupt the strict social segregation of reproduction by reproducing themselves. Thus they uphold a multi-queen, multi-nest cooperation that may not be advantageous to their genes since they act altruistically toward non-kin.Foragers
In ''F. polyctena'' colonies, there appears to be a separate group of designated foraging workers. The number of foragers correlates with the size of the colony. Foragers also tend to be older workers. However, if foragers are lost or die, other workers from the nest can replace them, indicating some flexibility in designated roles within the colony. These replacement workers have a shorter life expectancy as foragers, indicating that there could be some physiological development as the workers age that allows them to be effective foragers.Nestmate recognition
In order to prevent costly conflict between fellow nestmates or involuntarily altruistic behavior toward ants from a foreign nest, individual ants need to distinguish between their fellow nestmates and foreigners. It has been demonstrated that Formica polyctena uses genetically-based cues as a nestmate recognition mechanism. Since ''F. polyctena'', like all ant species, lives in colonies with high genetic relatedness, this type of mechanism would be successful in distinguishing between colonies. Beye, Neumann and Moritz conducted a study where pairs of ants from different nest were introduced to each other to see if they fought, tolerated or avoided one another. Pairs of ants from the same nests were introduced as well to act as a control. Genetic similarity between these ants was measured as well. A strong positive correlation existed between antagonistic behavior and genetic dissimilarity. Thus, ''F. polyctena'' ants mostly likely recognize their fellow workers through some genetically produced signal. Nest populations in close physical proximity to one another didn’t necessarily demonstrate either extremely aggressive or passive behavior toward each other, indicating that nest proximity does not influence recognition. Additionally, nest distance did not correlate with genetic similarity.Beye et al., pg. 56 Essentially, ''F. polyctena'' has adapted some form of genetically-based cue that allows nestmates to distinguish between each other and foreign individuals. Beye, Neumann and Moritz believe that these genetic cues act to keep nest colonies separate in homogenous environments that offer no other nestmate recognition strategies.Alarm signals
Alarm behavior can be triggered in ''Formica polyctena'' by the release of pheromones. When ants come across a specific pheromone, they approach the source with jaws wide open, as if confronting a threat. Specifically in ''F. polyctena'', these chemical alarm signals elicit a response not only within the nest, but along foraging paths. In particular, the formic acid sprayed by ants when attacked can trigger a predator alarm response in nearby ants, gathering reinforcements to attack the predator. In this way, formic acid doubles as a chemical weapon against predators and an alarm signal in ''F. polyctena''.F. Dumpert, pg. 67-68Disease resistance
Due to the close living situation of individuals in a ''F. polyctena'' colony, diseases can spread rapidly, causing significant damage to the colony’s population. Therefore, ''F. polyctena'' has evolved responses to combat the spread of disease. When an individual ant develops an immune response to some disease, the other workers can sense this. The workers decrease mouth-to-mouth exchanges of liquid, and prevent the infected individual from moving around. The healthy workers also increase antennal contact and grooming of the infected ant. This is believed to either remove pathogens from the ant that could cause such an immune response, or act as a “social vaccination.” Aubert and Richard proposed this social vaccination model, where they argue that if fellow nestmates groom an infected ant, they will be exposed to small amounts of the pathogens or molecules that could trigger an immune response within the healthy individuals. In essence, the healthy individuals develop a resistance to the pathogens carried by the infected individual before the pathogens can spread and infect them.Wars and cannibalism
''F. polyctena'' colonies wage wars on neighboring colonies. During wars, any dead ants are cannibalized by the colonies. These wars occur when food is scarce, usually during the spring months, so that the colonies can effectively feed a new generation of ants. Old workers commonly participate in these wars, due to their lower life expectancy than young workers. Spring wars allow the colonies to produce new generations consisting mainly of reproductives (queens and males) rather than workers. The rare wars during the summer and fall months produce food for new generations of workers instead. These young workers are more likely to survive the winter than the old workers who die in the wars. Essentially, the colonies recycle their food resources in the form of workers. Old workers die and are eaten to give rise to either reproductive or new workers. Even if a colony “loses” a war and there is a net loss of workers, the warring still provides food, and thus is beneficial to the colony. However, cannibalism is not an efficient food source unless other food resources are scarce, since one new individual requires more food input than another individual’s body can provide.Larvae predation
Haccou and Hemerik studied the effects of theNest temperature regulation
Dry nests
Nest moisture, solar radiation, heat produced by the metabolic activities of workers, and microbial activity in the nest material all contribute to nest thermoregulation. Dry, exposed ''F. polyctena'' nests have higher temperatures during the evening, but lose heat slowly throughout the night. This fluctuation is due to the solar radiation absorbed by the nest and workers during the day. When the workers return in the evening, they have high body temperatures from foraging in the sun that warm the interior of the nest. Dry nests have low external surface temperatures during the night, indicating that the physical nest material effectively retains most of the heat gained during the day. Additionally, because these workers metabolize, they release heat from this process and counteract the heat loss from the nest during the night.Moist nests
Moist, shaded nests display a different daily temperature pattern than dry nests due to the different conditions. In the evenings, the nest temperature drops and then increases as the night progresses. Solar radiation does not contribute a lot of heat to the nest. Also, the nest material is not an effective insulator like the dry nest material. Moist nests have high external surface temperatures during the night. Instead, they rely on another curious mechanism to warm the nest: microbial activity within the moist nest material. As the workers inside the nest during the evening raise the temperature of the surroundings, microbial activity increases which heats the nest. Indeed, microbial activity is much higher in nest material than in the surrounding forest floor. Microbial activity is not seen in dry nests because the microbes require water. However, despite this adaptation, moist nests on average have lower internal temperatures than dry nests.Seasonal fluctuation
''Formica polyctena'' nest temperature fluctuates seasonally as well. In the spring, there is a dramatic increase in heat production of the nest material, and then a more gradual decrease in the fall. This corresponds with the activity of the ants throughout the year. It is possible that the ants’ building activities aerate and provide optimum nutritional conditions for microbial activity, increasing the heat production of the nest well beyond what the ants themselves produce.Coenen-Stab, et al., pg 243Notes
References
* Aubert, A., F. J. Richard. “Social Management of the LPS-induced Inflammation in ''Formica polyctena'' Ants.” ''Brain, Behavior, and Immunity''. Vol. 22 (2008). * Beye, M., P. Neumann and R. F. A. Moritz. “Nestmate Recognition and the Genetic Gestalt in the Mound-building Ant ''Formica polyctena''.” ''Insectes Sociaux''. Vol 44. (1997). * Coenen-Stass, Dieter, Bernd Schaarschmidt and Ingolf Lamprecht. “Temperature Distribution and Calorimetric Determination of Heat Production in the Nest of the Wood Ant, ''Formica Polyctena'' (Hymenoptera, Formicidae).” ''Ecology'', Vol. 61, No. 2 (Apr., 1980). * Davies, N. B., Krebs, J. R., & West, S. A. (2012). An Introduction to Behavioral Ecology (4th ed.). Oxford: Wiley-Blackwell. * Driessen, Gerard J.J., Andre Th. Van Raalte, and Gerrit J. De Bruyn. “Cannibalism in the Red Wood Ant, ''Formica polyctena'' (Hymenoptera: formicidae),” ''Oecologia''. Vol. 63. (1984). * Dumpert, K. Trans. C. Johnson. ''The Social Biology of Ants.'' Marschfield, Massachusetts: Pitman Publishing Limited, 1978. * Frouz, J. “The Effect of Nest Moisture on Daily Temperature Regime in the Nests of ''Formica polyctena'' Wood Ants.” ''Insectes Sociaux''. Vol. 47 (2000). * Haccou, P. and L. Hemerik. “The Influence of Larval Dispersal in the Cinnabar Moth (''Tyria jacobaeae'') on Predation by the Red Wood Ant (''Formica polyctena''): An Analysis Based on the Proportional Hazards Model.”''Journal of Animal Ecology'', Vol. 54, No. 3 (Oct., 1985). * Helantera, Heikki, and Liselotte Sundström. “Worker Reproduction in ''Formica'' Ants.” ''The American Naturalist'', Vol. 170, No. 1 (July 2007). * Kruk-De Bruin, Martje, Luc C. M. Rost and Fons G. A. M. Draisma. “Estimates of the Number of Foraging Ants with the Lincoln-Index Method in Relation to the Colony Size of ''Formica polyctena''.”''Journal of Animal Ecology'', Vol. 46, No. 2 (Jun., 1977). * Sudd, John H., and Nigel R. Franks. (1987). ''The Behavioral Ecology of Ants.'' New York: Chapman and Hall. *External links
* {{Taxonbar, from=Q1721213 polyctena Hymenoptera of Europe Insects described in 1850 Taxa named by Arnold Förster Taxonomy articles created by Polbot