HOME

TheInfoList



OR:

In
chemistry Chemistry is the scientific study of the properties and behavior of matter. It is a physical science within the natural sciences that studies the chemical elements that make up matter and chemical compound, compounds made of atoms, molecules a ...
, a formal charge (F.C. or ), in the
covalent A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atom ...
view of chemical bonding, is the hypothetical charge assigned to an
atom Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
in a
molecule A molecule is a group of two or more atoms that are held together by Force, attractive forces known as chemical bonds; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics, organic chemi ...
, assuming that
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s in all
chemical bond A chemical bond is the association of atoms or ions to form molecules, crystals, and other structures. The bond may result from the electrostatic force between oppositely charged ions as in ionic bonds or through the sharing of electrons a ...
s are shared equally between atoms, regardless of relative
electronegativity Electronegativity, symbolized as , is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. An atom's electronegativity is affected by both its atomic number and the ...
. In simple terms, formal charge is the difference between the number of valence electrons of an atom in a neutral free state and the number assigned to that atom in a
Lewis structure Lewis structuresalso called Lewis dot formulas, Lewis dot structures, electron dot structures, or Lewis electron dot structures (LEDs)are diagrams that show the chemical bond, bonding between atoms of a molecule, as well as the lone pairs of elec ...
. When determining the best Lewis structure (or predominant resonance structure) for a molecule, the structure is chosen such that the formal charge on each of the atoms is as close to zero as possible. The formal charge of any atom in a molecule can be calculated by the following equation: q^ = V - L - \frac where is the number of
valence electron In chemistry and physics, valence electrons are electrons in the outermost shell of an atom, and that can participate in the formation of a chemical bond if the outermost shell is not closed. In a single covalent bond, a shared pair forms with b ...
s of the neutral atom in isolation (in its ground state); is the number of non-bonding valence electrons assigned to this atom in the Lewis structure of the molecule; and is the total number of electrons shared in bonds with other atoms in the molecule. It can also be found visually as shown below. Formal charge and
oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical Electrical charge, charge of an atom if all of its Chemical bond, bonds to other atoms are fully Ionic bond, ionic. It describes the degree of oxidation (loss of electrons ...
both assign a number to each individual atom within a compound; they are compared and contrasted in a section below.


Examples

*Example: CO2 is a neutral molecule with 16 total
valence electron In chemistry and physics, valence electrons are electrons in the outermost shell of an atom, and that can participate in the formation of a chemical bond if the outermost shell is not closed. In a single covalent bond, a shared pair forms with b ...
s. There are different ways to draw the Lewis structure **Carbon single bonded to both oxygen atoms (carbon = +2, oxygens = −1 each, total formal charge = 0) **Carbon single bonded to one oxygen and double bonded to another (carbon = +1, oxygendouble = 0, oxygensingle = −1, total formal charge = 0) **Carbon double bonded to both oxygen atoms (carbon = 0, oxygens = 0, total formal charge = 0) Even though all three structures gave us a total charge of zero, the final structure is the superior one because there are no charges in the molecule at all.


Pictorial method

The following is equivalent: *Draw a circle around the atom for which the formal charge is requested (as with carbon dioxide, below) : * Count up the number of electrons in the atom's "circle." Since the circle cuts the covalent bond "in half," each covalent bond counts as one electron instead of two. * Subtract the number of electrons in the circle from the number of valence electrons of the neutral atom in isolation (in its ground state) to determine the formal charge. : * The formal charges computed for the remaining atoms in this Lewis structure of carbon dioxide are shown below. : It is important to keep in mind that formal charges are just that – formal, in the sense that this system is a formalism. The formal charge system is just a method to keep track of all of the valence electrons that each atom brings with it when the molecule is formed.


Usage conventions

In
organic chemistry Organic chemistry is a subdiscipline within chemistry involving the science, scientific study of the structure, properties, and reactions of organic compounds and organic matter, organic materials, i.e., matter in its various forms that contain ...
convention, formal charges are an essential feature of a correctly rendered Lewis–Kekulé structure, and a structure omitting nonzero formal charges is considered incorrect, or at least, incomplete. Formal charges are drawn in close proximity to the atom bearing the charge. They may or may not be enclosed in a circle for clarity. In contrast, this convention is not followed in
inorganic chemistry Inorganic chemistry deals with chemical synthesis, synthesis and behavior of inorganic compound, inorganic and organometallic chemistry, organometallic compounds. This field covers chemical compounds that are not carbon-based, which are the subj ...
. Many workers in
organometallic Organometallic chemistry is the study of organometallic compounds, chemical compounds containing at least one chemical bond between a carbon atom of an organic molecule and a metal, including alkali, alkaline earth, and transition metals, and so ...
and a majority of workers in
coordination chemistry A coordination complex is a chemical compound consisting of a central atom or ion, which is usually metallic and is called the ''coordination centre'', and a surrounding array of chemical bond, bound molecules or ions, that are in turn known as ' ...
will omit formal charges, unless they are needed for emphasis, or they are needed to make a particular point. Instead a top-right corner ⌝ will be drawn following the covalently-bound, charged entity, in turn followed immediately by the ''overall'' charge. The top-right corner ⌝ is sometimes replaced by square brackets enclosing the entire charged species, again with the total charge written in the upper right corner, just outside the brackets. This difference in practice stems from the relatively straightforward assignment of bond order, valence electron count, and hence, formal charge for compounds only containing main-group elements (though
oligomeric In chemistry and biochemistry, an oligomer () is a molecule that consists of a few repeating units which could be derived, actually or conceptually, from smaller molecules, monomer, monomers.Quote: ''Oligomer molecule: A molecule of intermediate ...
compounds like
organolithium reagent In organometallic chemistry, organolithium reagents are chemical compounds that contain carbon–lithium (C–Li) bonds. These reagents are important in organic synthesis, and are frequently used to transfer the organic group or the lithium atom ...
s and enolates tend to be depicted in an oversimplified and idealized manner), but transition metals have an unclear number of valence electrons so there is no unambiguous way to assign formal charges.


Formal charge compared to oxidation state

The formal charge is a tool for estimating the distribution of
electric charge Electric charge (symbol ''q'', sometimes ''Q'') is a physical property of matter that causes it to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative''. Like charges repel each other and ...
within a molecule. The concept of
oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical Electrical charge, charge of an atom if all of its Chemical bond, bonds to other atoms are fully Ionic bond, ionic. It describes the degree of oxidation (loss of electrons ...
s constitutes a competing method to assess the distribution of electrons in molecules. If the formal charges and oxidation states of the atoms in
carbon dioxide Carbon dioxide is a chemical compound with the chemical formula . It is made up of molecules that each have one carbon atom covalent bond, covalently double bonded to two oxygen atoms. It is found in a gas state at room temperature and at norma ...
are compared, the following values are arrived at: : The reason for the difference between these values is that formal charges and oxidation states represent fundamentally different ways of looking at the distribution of electrons amongst the atoms in the molecule. With the formal charge, the electrons in each covalent bond are assumed to be split exactly evenly between the two atoms in the bond (hence the dividing by two in the method described above). The formal charge view of the CO2 molecule is essentially shown below: : The covalent (sharing) aspect of the bonding is overemphasized in the use of formal charges since in reality there is a higher electron density around the oxygen atoms due to their higher electronegativity compared to the carbon atom. This can be most effectively visualized in an electrostatic potential map. With the oxidation state formalism, the electrons in the bonds are "awarded" to the atom with the greater
electronegativity Electronegativity, symbolized as , is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. An atom's electronegativity is affected by both its atomic number and the ...
. The oxidation state view of the CO2 molecule is shown below: : Oxidation states overemphasize the ionic nature of the bonding; the difference in electronegativity between carbon and oxygen is insufficient to regard the bonds as being ionic in nature. In reality, the distribution of electrons in the molecule lies somewhere between these two extremes. The inadequacy of the simple Lewis structure view of molecules led to the development of the more generally applicable and accurate
valence bond theory In chemistry, valence bond (VB) theory is one of the two basic theories, along with molecular orbital (MO) theory, that were developed to use the methods of quantum mechanics to explain chemical bonding. It focuses on how the atomic orbitals of ...
of Slater, Pauling, et al., and henceforth the molecular orbital theory developed by Mulliken and Hund.


See also

*
Oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical Electrical charge, charge of an atom if all of its Chemical bond, bonds to other atoms are fully Ionic bond, ionic. It describes the degree of oxidation (loss of electrons ...
*
Valence (chemistry) In chemistry, the valence (US spelling) or valency (British spelling) of an atom is a measure of its combining capacity with other atoms when it forms chemical compounds or molecules. Valence is generally understood to be the number of chemica ...
*
Coordination number In chemistry, crystallography, and materials science, the coordination number, also called ligancy, of a central atom in a molecule or crystal is the number of atoms, molecules or ions bonded to it. The ion/molecule/atom surrounding the central ion ...


References

{{Reflist Chemical bonding Electric charge