Foreland Basin
   HOME

TheInfoList



OR:

A foreland basin is a structural basin that develops adjacent and parallel to a mountain belt. Foreland basins form because the immense mass created by crustal thickening associated with the evolution of a mountain belt causes the
lithosphere A lithosphere () is the rigid, outermost rocky shell of a terrestrial planet or natural satellite. On Earth, it is composed of the crust and the lithospheric mantle, the topmost portion of the upper mantle that behaves elastically on time ...
to bend, by a process known as lithospheric flexure. The width and depth of the foreland basin is determined by the flexural rigidity of the underlying lithosphere, and the characteristics of the mountain belt. The foreland basin receives
sediment Sediment is a solid material that is transported to a new location where it is deposited. It occurs naturally and, through the processes of weathering and erosion, is broken down and subsequently sediment transport, transported by the action of ...
that is eroded off the adjacent mountain belt, filling with thick sedimentary successions that thin away from the mountain belt. Foreland basins represent an endmember basin type, the other being rift basins. Accommodation (the space available for sediments to be deposited) is provided by loading and downflexure to form foreland basins, in contrast to rift basins, where accommodation space is generated by lithospheric extension.


Types of foreland basin

Foreland basins can be divided into two categories: * Peripheral (Pro) foreland basins, which occur on the plate that is subducted or underthrust during plate collision (i.e. the outer arc of the orogen) ** Examples include the North Alpine Foreland Basin of Europe, or the Ganges Basin of Asia * Retroarc (Retro) foreland basins, which occur on the plate that overrides during plate convergence or collision (i.e. situated behind the magmatic arc that is linked with the subduction of oceanic lithosphere) ** Examples include the Andean basins, or Late Mesozoic to Cenozoic Rocky Mountain Basins of North America


Foreland basin system

DeCelles & Giles (1996) provide a thorough definition of the foreland basin system. Foreland basin systems comprise three characteristic properties: # An elongate region of potential sediment accommodation that forms on continental crust between a contractional orogenic belt and the adjacent craton, mainly in response to geodynamic processes related to subduction and the resulting peripheral or retroarc fold-thrust belt; # It consists of four discrete depozones, referred to as the ''wedge-top'', ''foredeep'', '' forebulge'' and ''back-bulge'' depozones (depositional zones) – which of these depozones a sediment particle occupies depends on its location at the time of deposition, rather than its ultimate geometric relationship with the thrust belt; # The longitudinal dimension of the foreland basin system is roughly equal to the length of the fold-thrust belt, and does not include sediment that spills into remnant ocean basins or continental rifts (impactogens).


Foreland basin systems: depozones

The ''wedge-top'' sits on top of the moving thrust sheets and contains all the sediments charging from the active tectonic thrust wedge. This is where piggyback basins form. The ''foredeep'' is the thickest sedimentary zone and thickens toward the orogen. Sediments are deposited via distal fluvial, lacustrine, deltaic, and marine depositional systems. The ''forebulge'' and ''backbulge'' are the thinnest and most distal zones and are not always present. When present, they are defined by regional unconformities as well as aeolian and shallow-marine deposits. Sedimentation is most rapid near the moving thrust sheet. Sediment transport within the foredeep is generally parallel to the strike of the thrust fault and basin axis.


Plate motion and seismicity

The motion of the adjacent plates of the foreland basin can be determined by studying the active deformation zone with which it is connected. Today GPS measurements provide the rate at which one plate is moving relative to another. It is also important to consider that present day kinematics are unlikely to be the same as when deformation began. Thus, it is crucial to consider non-GPS models to determine the long-term evolution of continental collisions and in how it helped develop the adjacent foreland basins. Comparing both modern GPS (Sella et al. 2002) and non-GPS models allows deformation rates to be calculated. Comparing these numbers to the geologic regime helps constrain the number of probable models as well as which model is more geologically accurate within a specific region. Seismicity determines where active zones of seismic activity occur as well as measure the total fault displacements and the timing of the onset of deformation.


Formation of basins

Foreland basins form because as the mountain belt grows, it exerts a significant mass on the Earth's crust, which causes it to bend, or flex, downwards. This occurs so that the weight of the mountain belt can be compensated by
isostasy Isostasy (Greek wikt:ἴσος, ''ísos'' 'equal', wikt:στάσις, ''stásis'' 'standstill') or isostatic equilibrium is the state of gravity, gravitational mechanical equilibrium, equilibrium between Earth's crust (geology), crust (or lithosph ...
at the upflex of the forebulge. The
plate tectonic Plate may refer to: Cooking * Plate (dishware), broad, mainly flat vessel commonly used to serve food * Plates, tableware, dishes or dishware used for setting a table, serving food and dining * Plate, the content of such a plate (for example: r ...
evolution of a peripheral foreland basin involves three general stages. First, the passive margin stage with orogenic loading of previously stretched continental margin during the early stages of convergence. Second, the "early convergence stage defined by deep water conditions", and lastly a "later convergent stage during which a subaerial wedge is flanked with terrestrial or shallow marine foreland basins".Allen & Allen 2005 The temperature underneath the orogen is much higher and weakens the lithosphere. Thus, the thrust belt is mobile and the foreland basin system becomes deformed over time. Syntectonic unconformities demonstrate simultaneous subsidence and tectonic activity. Foreland basins are filled with sediments which erode from the adjacent mountain belt. In the early stages, the foreland basin is said to be ''underfilled''. During this stage, deep water and commonly marine sediments, known as flysch, are deposited. Eventually, the basin becomes completely filled. At this point, the basin enters the ''overfilled'' stage and deposition of terrestrial clastic sediments occurs. These are known as molasse. Sediment fill within the foredeep acts as an additional load on the continental lithosphere.


Lithospheric behavior

Although the degree to which the lithosphere relaxes over time is still controversial, most workers accept an elastic or visco-elastic rheology to describe the lithospheric deformation of the foreland basin. Allen & Allen (2005) describe a moving load system, one in which the deflection moves as a wave through the foreland plate before the load system. The deflection shape is commonly described as an asymmetrical low close to the load along the foreland and a broader uplifted deflection along the forebulge. The transport rate or flux of erosion, as well as sedimentation, is a function of topographic relief. For the loading model, the lithosphere is initially stiff, with the basin broad and shallow. Relaxation of the lithosphere allows subsidence near the thrust, narrowing of basin, forebulge toward thrust. During times of thrusting, the lithosphere is stiff and the forebulge broadens. The timing of the thrust deformation is opposite that of the relaxing of the lithosphere. The bending of the lithosphere under the orogenic load controls the drainage pattern of the foreland basin. The flexural tilting of the basin and the sediment supply from the orogen.


Lithospheric strength envelopes

Strength envelopes indicate that the rheological structure of the lithosphere underneath the foreland and the orogen are very different. The foreland basin typically shows a thermal and rheological structure similar to a rifted continental margin with three brittle layers above three ductile layers. The temperature underneath the orogen is much higher and thus greatly weakens the lithosphere. According to Zhou et al. (2003), "under compressional stress the lithosphere beneath the mountain range becomes ductile almost entirely, except a thin (about 6 km in the center) brittle layer near the surface and perhaps a thin brittle layer in the uppermost mantle." This lithospheric weakening underneath the orogenic belt may in part cause the regional lithospheric flexure behavior.


Thermal history

Foreland basins are considered to be hypothermal basins (cooler than normal), with low geothermal gradient and heat flow. Heat flow values average between 1 and 2 HFU (40–90 mWm−2. Rapid subsidence may be responsible for these low values. Over time sedimentary layers become buried and lose porosity. This can be due to sediment compaction or the physical or chemical changes, such as pressure or cementation. Thermal maturation of sediments is a factor of temperature and time and occurs at shallower depths due to past heat redistribution of migrating brines. Vitrinite reflectance, which typically demonstrates an exponential evolution of organic matter as a function of time, is the best organic indicator for thermal maturation. Studies have shown that present day thermal measurements of heat flow and geothermal gradients closely correspond to a regime's tectonic origin and development as well as the lithospheric mechanics.


Fluid migration

Migrating fluids originate from the sediments of the foreland basin and migrate in response to deformation. As a result, brine can migrate over great distances. Evidence of long-range migration includes: 1) correlation of petroleum to distant source rocks, 2) ore bodies deposited from metal-bearing brines, 3) anomalous thermal histories for shallow sediments, 4) regional potassium metasomatism and 5) epigenetic dolomite cements in ore bodies and deep aquifers.Bethke & Marshak 1990


Fluid source

Fluids carrying heat, minerals, and petroleum, have a vast impact on the tectonic regime within the foreland basin. Before deformation, sediment layers are porous and full of fluids, such as water and hydrated minerals. Once these sediments are buried and compacted, the pores become smaller and some of the fluids, about , leave the pores. This fluid has to go somewhere. Within the foreland basin, these fluids potentially can heat and mineralize materials, as well as mix with the local hydrostatic head.


Major driving force for fluid migration

Orogen topography is the major driving force of fluid migration. The heat from the lower crust moves via conduction and groundwater advection. Local hydrothermal areas occur when deep fluid flow moves very quickly. This can also explain very high temperatures at shallow depths. Other minor constraints include tectonic compression, thrusting, and sediment compaction. These are considered minor because they are limited by the slow rates of tectonic deformation, lithology and depositional rates, on the order of 0–10 cm yr−1, but more likely closer to 1 or less than 1 cm yr−1. Overpressured zones might allow for faster migration, when 1 kilometer or more of shaley sediments accumulate per 1 million years. Bethke & Marshak (1990) state that "groundwater that recharges at high elevation migrates through the subsurface in response to its high potential energy toward areas where the water table is lower."


Hydrocarbon migration

Bethke & Marshak (1990) explain that petroleum migrates not only in response to the hydrodynamic forces that drive groundwater flow, but to the buoyancy and capillary effects of the petroleum moving through microscopic pores. Migration patterns flow away from the orogenic belt and into the cratonic interior. Frequently, natural gas is found closer to the orogen and oil is found further away.


Modern (Cenozoic) foreland basin systems


Asia

* Ganges Basin ** Pro-foreland to the south of the
Himalaya The Himalayas, or Himalaya ( ), is a mountain range in Asia, separating the plains of the Indian subcontinent from the Tibetan Plateau. The range has some of the Earth's highest peaks, including the highest, Mount Everest. More than 100 pea ...
, in northern India and
Pakistan Pakistan, officially the Islamic Republic of Pakistan, is a country in South Asia. It is the List of countries and dependencies by population, fifth-most populous country, with a population of over 241.5 million, having the Islam by country# ...
** Began to form 65 million years ago during the collision of India and Eurasia ** Filled with a sedimentary succession more than 12 km thick * Northern Tarim Basin ** Pro-foreland to the south of the Tian Shan ** Formed initially during the Late Paleozoic, during the
Carboniferous The Carboniferous ( ) is a Geologic time scale, geologic period and System (stratigraphy), system of the Paleozoic era (geology), era that spans 60 million years, from the end of the Devonian Period Ma (million years ago) to the beginning of the ...
and
Devonian The Devonian ( ) is a period (geology), geologic period and system (stratigraphy), system of the Paleozoic era (geology), era during the Phanerozoic eon (geology), eon, spanning 60.3 million years from the end of the preceding Silurian per ...
** Rejuvenated during the Cenozoic as a result of far field stress associated with the India-Eurasia collision and the renewed uplift of the Tian Shan ** Thickest sedimentary section is beneath Kashgar, where Cenozoic sediment is more than 10,000 metres thick * Southern Junggar Basin ** Retro-foreland to the north of the Tian Shan ** Formed initially during the Late Paleozoic and rejuvenated during the Cenozoic ** Thickest sedimentary section is west of Urumqi, where
Mesozoic The Mesozoic Era is the Era (geology), era of Earth's Geologic time scale, geological history, lasting from about , comprising the Triassic, Jurassic and Cretaceous Period (geology), Periods. It is characterized by the dominance of archosaurian r ...
sediment is more than 8,000 metres thick


Middle East

*
Persian Gulf The Persian Gulf, sometimes called the Arabian Gulf, is a Mediterranean seas, mediterranean sea in West Asia. The body of water is an extension of the Arabian Sea and the larger Indian Ocean located between Iran and the Arabian Peninsula.Un ...
** Foreland to the west of the Zagros mountains ** Underfilled stage ** Terrestrial part of the basin covers parts of Iraq and Kuwait


Europe

* North Alpine Basin (the Molasse Basin) ** Peripheral foreland basin to the north of the
Alps The Alps () are some of the highest and most extensive mountain ranges in Europe, stretching approximately across eight Alpine countries (from west to east): Monaco, France, Switzerland, Italy, Liechtenstein, Germany, Austria and Slovenia. ...
, in Austria, Switzerland, Germany and France. ** Formed during the Palaeocene to
Neogene The Neogene ( ,) is a geologic period and system that spans 20.45 million years from the end of the Paleogene Period million years ago ( Mya) to the beginning of the present Quaternary Period million years ago. It is the second period of th ...
(65.5–2.6 Ma) convergence and collision between
Eurasia Eurasia ( , ) is a continental area on Earth, comprising all of Europe and Asia. According to some geographers, Physical geography, physiographically, Eurasia is a single supercontinent. The concept of Europe and Asia as distinct continents d ...
and the Adriatic Plate ** Complications arise in the formation of the Rhine Graben * Po Basin, northern Italy. ** Retro-foreland basin of the Western and Central Southern Alps and pro-foreland of the Northern Apennines. It developed through extensional phases followed by compressional stages. Its compressional architecture is overprinted on the inherited extensional framework. ** The compressional architecture "developed intermittently at the front of two different mountain chains, the Northern Apennines and the Southern Alps, progressively converging one towards the other." ** There were two extensional cycles: a) Eastward pre-rift extension cycles culminating in the Anisian to Carnian (middle to early late Triassic, 247–227 Ma) cycle formation of the carbonate platform and basin system; b) Late Triassic–Liassic syn-rift extension phases related to the Piedmont-Liguria and Ionian oceanic basin spreading. After this the maximum basin widening and deepening was reached with progressive formation of the Lombardian, Belluno, and Adriatic carbonate basins. * Veneto-Friuli foreland basin, an alluvial plain in north-eastern Italy. ** Developed as the result of superposition of three overlapping foreland systems which differed in age and tectonic movement direction as this plain is the foreland of three surrounding chains. These are: a) the External Dinarides to the East, with Late Palaeocene to the Middle Eocene WSW vergent main deformation phases; b) the Eastern Southern Alps to the north, with mostly Middle-Late Miocene (17–7 Ma) deformation and south-directed tectonic movement; c) the Northern Apennines to the southwest, with Plio-Pleistocene (5 Ma-Recent) NE-directed deformation. ** It is separated from the Central Western Alps and its foreland (the Po foreland basin) by the Lessini and Berici Mountains and Euganei Hills structural high, a relatively undeformed foreland block. ** Flexure began in the Late Cretaceous with an E-ward faint bending due to the build-up of the External Dinaric thrust belt. There followed two main depositional/flexure cycles: a) the Chattian-Langhian cycle (Late Oligocene-Middle Eocene, 28–14 Ma) with a weak northward bending that accommodated sediments mainly from the uplifted and eroded axial sector of the Alps; b) the Serravallian-Early Messinian cycle (Middle to Late Miocene) with a NNW-ward prominent bending due to quick uplift of the Southern Alps. In the Pliocene-Pleistocene only the south-western-most part (southern part of the Veneto Basin) bent towards SW as result of the Northern Apennines build-up. * Central and Southern Adriatic basins ** Located between
Italy Italy, officially the Italian Republic, is a country in Southern Europe, Southern and Western Europe, Western Europe. It consists of Italian Peninsula, a peninsula that extends into the Mediterranean Sea, with the Alps on its northern land b ...
and the Balkan Peninsula. It includes the
Adriatic Sea The Adriatic Sea () is a body of water separating the Italian Peninsula from the Balkans, Balkan Peninsula. The Adriatic is the northernmost arm of the Mediterranean Sea, extending from the Strait of Otranto (where it connects to the Ionian Se ...
Istria Istria ( ; Croatian language, Croatian and Slovene language, Slovene: ; Italian language, Italian and Venetian language, Venetian: ; ; Istro-Romanian language, Istro-Romanian: ; ; ) is the largest peninsula within the Adriatic Sea. Located at th ...
, the Gargano Promontory and the
Apulia Apulia ( ), also known by its Italian language, Italian name Puglia (), is a Regions of Italy, region of Italy, located in the Southern Italy, southern peninsular section of the country, bordering the Adriatic Sea to the east, the Strait of Ot ...
n Peninsula. ** Formed by two orogenies, the Dinarides orogeny (Latest Cretaceous, 75–66 Ma to Eocene, 56–34 Ma) and Apennine orogeny (Miocene to Pliocene (23–2.6 Ma). It is connected to the Po Basin. * Foreland basins of the Carpathian Mountains ** Carpathian Foredeep *** Continuation of North Alpine Molasse Basin to the Western Carpathians, located in southern
Poland Poland, officially the Republic of Poland, is a country in Central Europe. It extends from the Baltic Sea in the north to the Sudetes and Carpathian Mountains in the south, bordered by Lithuania and Russia to the northeast, Belarus and Ukrai ...
and western
Ukraine Ukraine is a country in Eastern Europe. It is the List of European countries by area, second-largest country in Europe after Russia, which Russia–Ukraine border, borders it to the east and northeast. Ukraine also borders Belarus to the nor ...
. ** East Carpathian Foreland Basin *** The foreland basin of the Eastern Carpathians which extends through southern Poland, western Ukraine, Moldova and Romania and is 800 km long. In the late Miocene to early Pliocene it was an important sediment supplier to the Dacian Basin and the Black Sea. ** Dacian Basin *** This is a foreland basin by the Romanian section of the Eastern Carpathians and the Southern Carpathians (also in Romania). It is a post-collisional basin which developed in the Messinian to Pliocene (7–2.6 Ma). Initially the sedimentation from this basin was mostly just in a pre-existent foredeep area. Subsequently it extended southward over the northern part of the Moesian Platform and a part of the Scythian platform. * Ebro Basin ** Peripheral foreland basin to the south of the Pyrenees, in northern Spain ** Substantial deformation of the foreland basin has occurred in the north, exemplified by the foreland fold and thrust belt in the western Catalan province. The basin is well known for the spectacular exposures of syn- and post-tectonic sediment strata due to the peculiar drainage evolution of the basin. * Guadalquivir Basin ** Formed during the Neogene north of the Betic Cordillera (southern Spain), on a Hercynian basement.Garcia-Castellanos, D., M. Fernàndez & M. Torné, 2002. Modelling the evolution of the Guadalquivir foreland basin (South Spain). Tectonics 21(3), . *
Aquitaine Basin The Aquitaine Basin is the second largest Mesozoic and Cenozoic sedimentary basin in France after the Paris Basin, occupying a large part of the country's southwestern quadrant. Its surface area covers 66,000 km2 onshore. It formed on Varisca ...
** Retro-foreland basin to the north of the Pyrenees, in southern France


North America

* Western Canadian Sedimentary Basin ** Foreland to the east of the Rocky Mountains,
Alberta Alberta is a Provinces and territories of Canada, province in Canada. It is a part of Western Canada and is one of the three Canadian Prairies, prairie provinces. Alberta is bordered by British Columbia to its west, Saskatchewan to its east, t ...


South America

* Andean foreland basins ** Caguán-Putumayo Basin ** Cesar-Ranchería Basin ** Llanos Basin ** Magallanes Basin ** Marañón Basin ** Middle Magdalena Valley ** Neuquén Basin ** Oriente Basin ** Ucayali Basin ** Upper Magdalena Valley


Ancient foreland basin systems


Asia

* Longmen Shan Basin ** Foreland to the east of the Longmen Shan mountains ** Peak evolution during the
Triassic The Triassic ( ; sometimes symbolized 🝈) is a geologic period and system which spans 50.5 million years from the end of the Permian Period 251.902 million years ago ( Mya), to the beginning of the Jurassic Period 201.4 Mya. The Triassic is t ...
to
Jurassic The Jurassic ( ) is a Geological period, geologic period and System (stratigraphy), stratigraphic system that spanned from the end of the Triassic Period million years ago (Mya) to the beginning of the Cretaceous Period, approximately 143.1 Mya. ...
* Urals Foreland ** Foreland to the west of the Ural Mountains, in Russia ** Formed during the Paleozoic


Europe

* Windermere Supergroup ** Foreland basin caused by subduction of Iapetus ocean under Avalonia ** Ordovician to Silurian in age ** Underlies most of England


North America

* Western Interior Basin ** Foreland to the east of the Sevier orogenic belt ** Covered most of the western and central
Northwest Territories The Northwest Territories is a federal Provinces and territories of Canada, territory of Canada. At a land area of approximately and a 2021 census population of 41,070, it is the second-largest and the most populous of Provinces and territorie ...
; western and central
Alberta Alberta is a Provinces and territories of Canada, province in Canada. It is a part of Western Canada and is one of the three Canadian Prairies, prairie provinces. Alberta is bordered by British Columbia to its west, Saskatchewan to its east, t ...
; central and eastern
Montana Montana ( ) is a landlocked U.S. state, state in the Mountain states, Mountain West subregion of the Western United States. It is bordered by Idaho to the west, North Dakota to the east, South Dakota to the southeast, Wyoming to the south, an ...
;
Wyoming Wyoming ( ) is a landlocked U.S. state, state in the Mountain states, Mountain West subregion of the Western United States, Western United States. It borders Montana to the north and northwest, South Dakota and Nebraska to the east, Idaho t ...
; central and eastern
Utah Utah is a landlocked state in the Mountain states, Mountain West subregion of the Western United States. It is one of the Four Corners states, sharing a border with Arizona, Colorado, and New Mexico. It also borders Wyoming to the northea ...
;
Colorado Colorado is a U.S. state, state in the Western United States. It is one of the Mountain states, sharing the Four Corners region with Arizona, New Mexico, and Utah. It is also bordered by Wyoming to the north, Nebraska to the northeast, Kansas ...
; central and eastern
New Mexico New Mexico is a state in the Southwestern United States, Southwestern region of the United States. It is one of the Mountain States of the southern Rocky Mountains, sharing the Four Corners region with Utah, Colorado, and Arizona. It also ...
; western
Texas Texas ( , ; or ) is the most populous U.S. state, state in the South Central United States, South Central region of the United States. It borders Louisiana to the east, Arkansas to the northeast, Oklahoma to the north, New Mexico to the we ...
; eastern Chihuahua; Coahuila; eastern
Durango Durango, officially the Free and Sovereign State of Durango, is one of the 31 states which make up the Political divisions of Mexico, 32 Federal Entities of Mexico, situated in the northwest portion of the country. With a population of 1,832,650 ...
; northern
Zacatecas Zacatecas, officially the Free and Sovereign State of Zacatecas, is one of the Political divisions of Mexico, 31 states of Mexico. It is divided into Municipalities of Zacatecas, 58 municipalities and its capital city is Zacatecas City, Zacatec ...
; Aguascalientes; eastern and central
Guanajuato Guanajuato, officially the Free and Sovereign State of Guanajuato, is one of the 32 states that make up the Political divisions of Mexico, Federal Entities of Mexico. It is divided into Municipalities of Guanajuato, 46 municipalities and its cap ...
; western San Luis Potosí;
Querétaro Querétaro, officially the Free and Sovereign State of Querétaro, is one of the Political divisions of Mexico, 32 federal entities of Mexico. It is divided into Municipalities of Querétaro, 18 municipalities. Its capital city is Querétaro Cit ...
; and all but the western edge of
Michoacán Michoacán, formally Michoacán de Ocampo, officially the Free and Sovereign State of Michoacán de Ocampo, is one of the 31 states which, together with Mexico City, compose the Political divisions of Mexico, Federal Entities of Mexico. The stat ...
** Evolved during the
Cretaceous The Cretaceous ( ) is a geological period that lasted from about 143.1 to 66 mya (unit), million years ago (Mya). It is the third and final period of the Mesozoic Era (geology), Era, as well as the longest. At around 77.1 million years, it is the ...
** Deepest parts of the basin filled with the Mancos Shale ** Most of the Bighorn Basin filled with the Thermopolis Shale * Appalachian Basin ** Foreland to the west of the Appalachian mountains, in Eastern United States * Bend Arch – Fort Worth Basin ** Pro-Foreland to the east of the Ouachita orogenic belt ** Formed during the Paleozoic


South America

* Foreland to the east of the Central Andes orogenic belt – The Southern Chaco Foreland Basin in northern
Argentina Argentina, officially the Argentine Republic, is a country in the southern half of South America. It covers an area of , making it the List of South American countries by area, second-largest country in South America after Brazil, the fourt ...


See also

*
Back-arc basin A back-arc basin is a type of geologic Structural basin, basin, found at some convergent boundary, convergent plate boundaries. Presently all back-arc basins are submarine features associated with island arcs and subduction zones, with many found ...
* Back-arc region * Forearc basin * Passive margin


References


Citations


General and cited references

* Allen, Philip A. and Allen, John R. (2005) ''Basin Analysis: Principles and Applications'', 2nd ed., Blackwell Publishing, 549 pp. * Allen, M., Jackson, J., and Walker, R. (2004) "Late Cenozoic reorganization of the Arabia-Eurasia collision and the comparison of short-term and long-term deformation rates". ''Tectonics'', 23, TC2008, 16 pp. * Bethke, Craig M. and Marshak, Stephen. (1990) "Brine migrations across North America-the plate tectonics of groundwater". ''Annual Review of Earth and Planetary Sciences'', 18, pp. 287–315. * Catuneanu, Octavian. (2004) Retroarc foreland systems – evolution through time. ''Journal of African Earth Sciences'', 38, pp. 225–242. * * Flemings, Peter B. and Jordan, Teresa E. (1989) "A synthetic stratigraphic model of foreland basin development". ''Journal of Geophysical Research'', 94, B4, pp. 3853–3866. * Garcia-Castellanos, D., J. Vergés, J.M. Gaspar-Escribano & S. Cloetingh, 2003
"Interplay between tectonics, climate and fluvial transport during the Cenozoic evolution of the Ebro Basin (NE Iberia)"
''Journal of Geophysical Research'' 108 (B7), 2347. . * Oliver, Jack. (1986) "Fluids expelled tectonically from orogenic belts: their role in hydrocarbon migration and other geologic phenomena". ''Geology'', 14, p. 99–102. * Sella, Giovanni F., Dixon, Timothy H., Mao, Ailin. (2002) REVEL: a model for current plate velocities from space geodesy. ''Journal of Geophysical Research'', 107, B4, 2081, 30 pp. * Zhou, Di, Yu, Ho-Shing, Xu, He-Hua, Shi, Xiao-Bin, Chou, Ying-Wei. (2003) "Modeling of thermo-rheological structure of lithosphere under the foreland basin and mountain belt of Taiwan". ''Tectonophysics'', 374, p. 115–134.


Further reading

* * * {{Structural geology . Sedimentology Tectonics