The
magnetic flux
In physics, specifically electromagnetism, the magnetic flux through a surface is the surface integral of the normal component of the magnetic field B over that surface. It is usually denoted or . The SI unit of magnetic flux is the we ...
, represented by the symbol , threading some contour or loop is defined as the magnetic field multiplied by the loop area , i.e. . Both and can be arbitrary, meaning that the flux can be as well but increments of flux can be quantized. The wave function can be multivalued as it happens in the
Aharonov–Bohm effect
The Aharonov–Bohm effect, sometimes called the Ehrenberg–Siday–Aharonov–Bohm effect, is a quantum mechanics, quantum-mechanical phenomenon in which an electric charge, electrically charged point particle, particle is affected by an elect ...
or quantized as in
superconductors
Superconductivity is a set of physical properties observed in superconductors: materials where electrical resistance vanishes and magnetic fields are expelled from the material. Unlike an ordinary metallic conductor, whose resistance decreases ...
. The unit of quantization is therefore called magnetic flux quantum.
Dirac magnetic flux quantum
The first to realize the importance of the flux quantum was Dirac in his publication on monopoles
The phenomenon of flux quantization was predicted first by
Fritz London
Fritz Wolfgang London (March 7, 1900 – March 30, 1954) was a German born physicist and professor at Duke University. His fundamental contributions to the theories of chemical bonding and of intermolecular forces (London dispersion forces) are to ...
then within the
Aharonov–Bohm effect
The Aharonov–Bohm effect, sometimes called the Ehrenberg–Siday–Aharonov–Bohm effect, is a quantum mechanics, quantum-mechanical phenomenon in which an electric charge, electrically charged point particle, particle is affected by an elect ...
and later discovered experimentally in superconductors (see ' below).
Superconducting magnetic flux quantum
If one deals with a superconducting ring (i.e. a closed loop path in a
superconductor) or a hole in a bulk
superconductor, the magnetic flux threading such a hole/loop is quantized.
The (superconducting) magnetic flux quantum is a combination of fundamental physical constants: the
Planck constant
The Planck constant, or Planck's constant, denoted by h, is a fundamental physical constant of foundational importance in quantum mechanics: a photon's energy is equal to its frequency multiplied by the Planck constant, and the wavelength of a ...
and the
electron charge .
Its value is, therefore, the same for any superconductor.
To understand this definition in the context of the Dirac flux quantum one shall consider that the effective quasiparticles active in a superconductors are
Cooper pairs with an effective charge of 2 electrons .
The phenomenon of flux quantization was first discovered in superconductors experimentally by B. S. Deaver and W. M. Fairbank
[ and, independently, by R. Doll and M. Näbauer,][ in 1961. The quantization of magnetic flux is closely related to the Little–Parks effect, but was predicted earlier by ]Fritz London
Fritz Wolfgang London (March 7, 1900 – March 30, 1954) was a German born physicist and professor at Duke University. His fundamental contributions to the theories of chemical bonding and of intermolecular forces (London dispersion forces) are to ...
in 1948 using a phenomenological model
A phenomenological model is a scientific model that describes the empirical relationship of phenomena to each other, in a way which is consistent with fundamental theory, but is not directly derived from theory. In other words, a phenomenological ...
.[
The inverse of the flux quantum, , is called the Josephson constant, and is denoted J. It is the constant of proportionality of the ]Josephson effect
In physics, the Josephson effect is a phenomenon that occurs when two superconductors are placed in proximity, with some barrier or restriction between them. The effect is named after the British physicist Brian Josephson, who predicted in 1962 ...
, relating the potential difference
Voltage, also known as (electrical) potential difference, electric pressure, or electric tension, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge ...
across a Josephson junction to the frequency
Frequency is the number of occurrences of a repeating event per unit of time. Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio ...
of the irradiation. The Josephson effect is very widely used to provide a standard for high-precision measurements of potential difference, which (from 1990 to 2019) were related to a fixed, conventional value of the Josephson constant, denoted J-90. With the 2019 revision of the SI
In 2019, four of the seven SI base units specified in the International System of Quantities were redefined in terms of natural physical constants, rather than human artefacts such as the standard kilogram.
Effective 20 May 2019, the 144th ...
, the Josephson constant has an exact value of J = .
Derivation of the superconducting flux quantum
The following physical equations use SI units. In CGS units, a factor of would appear.
The superconducting properties in each point of the superconductor are described by the ''complex'' quantum mechanical wave function – the superconducting order parameter. As with any complex function, can be written as , where is the amplitude and is the phase. Changing the phase by will not change and, correspondingly, will not change any physical properties. However, in the superconductor of non-trivial topology, e.g. superconductor with the hole or superconducting loop/cylinder, the phase may continuously change from some value to the value as one goes around the hole/loop and comes to the same starting point. If this is so, then one has magnetic flux quanta trapped in the hole/loop, as shown below:
Per minimal coupling, the current density
In electromagnetism, current density is the amount of charge per unit time that flows through a unit area of a chosen cross section. The current density vector is defined as a vector whose magnitude is the electric current per cross-sectional ...
of Cooper pairs in the superconductor is:
where is the charge of the Cooper pair.
The wave function is the Ginzburg–Landau order parameter:
Plugged into the expression of the current, one obtains:
Inside the body of the superconductor, the current density J is zero, and therefore
Integrating around the hole/loop using Stokes' theorem
Stokes' theorem, also known as the Kelvin–Stokes theorem after Lord Kelvin and George Stokes, the fundamental theorem for curls, or simply the curl theorem, is a theorem in vector calculus on \R^3. Given a vector field, the theorem relates th ...
and gives:
Now, because the order parameter must return to the same value when the integral goes back to the same point, we have:
Due to the Meissner effect
In condensed-matter physics, the Meissner effect (or Meißner–Ochsenfeld effect) is the expulsion of a magnetic field from a superconductor during its transition to the superconducting state when it is cooled below the critical temperature. Th ...
, the magnetic induction inside the superconductor is zero. More exactly, magnetic field penetrates into a superconductor over a small distance called London's magnetic field penetration depth (denoted and usually ≈ 100 nm). The screening currents also flow in this -layer near the surface, creating magnetization inside the superconductor, which perfectly compensates the applied field , thus resulting in inside the superconductor.
The magnetic flux frozen in a loop/hole (plus its -layer) will always be quantized. However, the value of the flux quantum is equal to only when the path/trajectory around the hole described above can be chosen so that it lays in the superconducting region without screening currents, i.e. several away from the surface. There are geometries where this condition cannot be satisfied, e.g. a loop made of very thin () superconducting wire or the cylinder with the similar wall thickness. In the latter case, the flux has a quantum different from .
The flux quantization is a key idea behind a SQUID
A squid (: squid) is a mollusc with an elongated soft body, large eyes, eight cephalopod limb, arms, and two tentacles in the orders Myopsida, Oegopsida, and Bathyteuthida (though many other molluscs within the broader Neocoleoidea are also ...
, which is one of the most sensitive magnetometer
A magnetometer is a device that measures magnetic field or magnetic dipole moment. Different types of magnetometers measure the direction, strength, or relative change of a magnetic field at a particular location. A compass is one such device, ...
s available.
Flux quantization also plays an important role in the physics of type II superconductors. When such a superconductor (now without any holes) is placed in a magnetic field with the strength between the first critical field and the second critical field , the field partially penetrates into the superconductor in a form of Abrikosov vortices. The Abrikosov vortex consists of a normal core – a cylinder of the normal (non-superconducting) phase with a diameter on the order of the , the superconducting coherence length. The normal core plays a role of a hole in the superconducting phase. The magnetic field lines pass along this normal core through the whole sample. The screening currents circulate in the -vicinity of the core and screen the rest of the superconductor from the magnetic field in the core. In total, each such Abrikosov vortex carries one quantum of magnetic flux .
Measuring the magnetic flux
Prior to the 2019 revision of the SI
In 2019, four of the seven SI base units specified in the International System of Quantities were redefined in terms of natural physical constants, rather than human artefacts such as the standard kilogram.
Effective 20 May 2019, the 144th ...
, the magnetic flux quantum was measured with great precision by exploiting the Josephson effect
In physics, the Josephson effect is a phenomenon that occurs when two superconductors are placed in proximity, with some barrier or restriction between them. The effect is named after the British physicist Brian Josephson, who predicted in 1962 ...
. When coupled with the measurement of the von Klitzing constant , this provided the most accurate values of the Planck constant
The Planck constant, or Planck's constant, denoted by h, is a fundamental physical constant of foundational importance in quantum mechanics: a photon's energy is equal to its frequency multiplied by the Planck constant, and the wavelength of a ...
obtained until 2019. This may be counterintuitive, since is generally associated with the behaviour of microscopically small systems, whereas the quantization of magnetic flux in a superconductor and the quantum Hall effect
The quantum Hall effect (or integer quantum Hall effect) is a quantized version of the Hall effect which is observed in two-dimensional electron systems subjected to low temperatures and strong magnetic fields, in which the Hall resistance exhi ...
are both emergent phenomena associated with thermodynamically large numbers of particles.
As a result of the 2019 revision of the SI
In 2019, four of the seven SI base units specified in the International System of Quantities were redefined in terms of natural physical constants, rather than human artefacts such as the standard kilogram.
Effective 20 May 2019, the 144th ...
, the Planck constant has a fixed value which, together with the definitions of the second
The second (symbol: s) is a unit of time derived from the division of the day first into 24 hours, then to 60 minutes, and finally to 60 seconds each (24 × 60 × 60 = 86400). The current and formal definition in the International System of U ...
and the metre
The metre (or meter in US spelling; symbol: m) is the base unit of length in the International System of Units (SI). Since 2019, the metre has been defined as the length of the path travelled by light in vacuum during a time interval of of ...
, provides the official definition of the kilogram
The kilogram (also spelled kilogramme) is the base unit of mass in the International System of Units (SI), equal to one thousand grams. It has the unit symbol kg. The word "kilogram" is formed from the combination of the metric prefix kilo- (m ...
. Furthermore, the elementary charge
The elementary charge, usually denoted by , is a fundamental physical constant, defined as the electric charge carried by a single proton (+1 ''e'') or, equivalently, the magnitude of the negative electric charge carried by a single electron, ...
also has a fixed value of to define the ampere
The ampere ( , ; symbol: A), often shortened to amp,SI supports only the use of symbols and deprecates the use of abbreviations for units. is the unit of electric current in the International System of Units (SI). One ampere is equal to 1 c ...
. Therefore, both the Josephson constant and the von Klitzing constant have fixed values, and the Josephson effect along with the von Klitzing quantum Hall effect becomes the primary ''mise en pratique'' for the definition of the ampere and other electric units in the SI.
See also
* Aharonov–Bohm effect
The Aharonov–Bohm effect, sometimes called the Ehrenberg–Siday–Aharonov–Bohm effect, is a quantum mechanics, quantum-mechanical phenomenon in which an electric charge, electrically charged point particle, particle is affected by an elect ...
* Brian Josephson
* Committee on Data for Science and Technology
The Committee on Data of the International Science Council (CODATA) was established in 1966 as the Committee on Data for Science and Technology, originally part of the International Council of Scientific Unions, now part of the International ...
* Domain wall (magnetism)
* Flux pinning
* Ginzburg–Landau theory
* Husimi Q representation
* Macroscopic quantum phenomena
Macroscopic quantum phenomena are processes showing Quantum mechanics, quantum behavior at the macroscopic scale, rather than at the Atom, atomic scale where quantum effects are prevalent. The best-known examples of macroscopic quantum phenomena ar ...
* Magnetic domain
A magnetic domain is a region within a magnetic material in which the magnetization is in a uniform direction. This means that the individual magnetic moments of the atoms are aligned with one another and they point in the same direction. When c ...
* Magnetic monopole
In particle physics, a magnetic monopole is a hypothetical particle that is an isolated magnet with only one magnetic pole (a north pole without a south pole or vice versa). A magnetic monopole would have a net north or south "magnetic charge". ...
* Quantum vortex
In physics, a quantum vortex represents a quantized flux circulation of some physical quantity. In most cases, quantum vortices are a type of topological defect exhibited in superfluids and superconductors. The existence of quantum vortices was ...
* Topological defect
* von Klitzing constant
References
Further reading
* Aharonov–Bohm effect
The Aharonov–Bohm effect, sometimes called the Ehrenberg–Siday–Aharonov–Bohm effect, is a quantum mechanics, quantum-mechanical phenomenon in which an electric charge, electrically charged point particle, particle is affected by an elect ...
and flux quantization in superconductors
* David tong lectures: {{citation , title=Quantum hall effect , url=https://www.damtp.cam.ac.uk/user/tong/qhe/qhe.pdf
Superconductivity
Quantum magnetism
Metrology
Physical constants