β-carotene. Lutein is a yellow pigment found in fruits and vegetables and is the most abundant carotenoid in plants.
Lycopene
Lycopene is an organic compound classified as a tetraterpene and a carotene. Lycopene (from the Neo-Latin '' Lycopersicon'', the name of a former tomato genus) is a bright red carotenoid hydrocarbon found in tomatoes and other red fruits and ve ...
is the red pigment responsible for the color of
tomato
The tomato (, ), ''Solanum lycopersicum'', is a plant whose fruit is an edible Berry (botany), berry that is eaten as a vegetable. The tomato is a member of the nightshade family that includes tobacco, potato, and chili peppers. It originate ...
es. Other less common carotenoids in plants include lutein epoxide (in many woody species), lactucaxanthin (found in lettuce), and alpha carotene (found in carrots).

A particularly noticeable manifestation of pigmentation in plants is seen with
autumn leaf color
Autumn leaf color is a phenomenon that affects the normally green leaves of many deciduous trees and shrubs by which they take on, during a few weeks in the autumn season, various shades of yellow, orange, red, purple, and brown. The phenomenon ...
, a phenomenon that affects the normally
green
Green is the color between cyan and yellow on the visible spectrum. It is evoked by light which has a dominant wavelength of roughly 495570 nm. In subtractive color systems, used in painting and color printing, it is created by a com ...
leaves of many
deciduous
In the fields of horticulture and botany, the term deciduous () means "falling off at maturity" and "tending to fall off", in reference to trees and shrubs that seasonally shed Leaf, leaves, usually in the autumn; to the shedding of petals, aft ...
tree
In botany, a tree is a perennial plant with an elongated stem, or trunk, usually supporting branches and leaves. In some usages, the definition of a tree may be narrower, e.g., including only woody plants with secondary growth, only ...
s and
shrub
A shrub or bush is a small to medium-sized perennial woody plant. Unlike herbaceous plants, shrubs have persistent woody stems above the ground. Shrubs can be either deciduous or evergreen. They are distinguished from trees by their multiple ...
s whereby they take on, during a few weeks in the
autumn
Autumn, also known as fall (especially in US & Canada), is one of the four temperate seasons on Earth. Outside the tropics, autumn marks the transition from summer to winter, in September (Northern Hemisphere) or March ( Southern Hemisphe ...
season, various shades of
red
Red is the color at the long wavelength end of the visible spectrum of light, next to orange and opposite violet. It has a dominant wavelength of approximately 625–750 nanometres. It is a primary color in the RGB color model and a seconda ...
,
yellow
Yellow is the color between green and orange on the spectrum of light. It is evoked by light with a dominant wavelength of roughly 575585 nm. It is a primary color in subtractive color systems, used in painting or color printing. In t ...
,
purple
Purple is a color similar in appearance to violet light. In the RYB color model historically used in the arts, purple is a secondary color created by combining red and blue pigments. In the CMYK color model used in modern printing, purple is ...
, and
brown
Brown is a color. It can be considered a composite color, but it is mainly a darker shade of orange. In the CMYK color model used in printing and painting, brown is usually made by combining the colors Orange (colour), orange and black.
In the ...
.
Chlorophylls degrade into colorless
tetrapyrrole
Tetrapyrroles are a class of chemical compounds that contain four pyrrole or pyrrole-like rings. The pyrrole/pyrrole derivatives are linked by ( or units), in either a linear or a cyclic fashion. Pyrroles are a five-atom ring with four carbon ...
s known as ''nonfluorescent chlorophyll catabolites'' (NCCs).
As the predominant chlorophylls degrade, the hidden pigments of yellow
xanthophyll
Xanthophylls (originally phylloxanthins) are yellow pigments that occur widely in nature and form one of two major divisions of the carotenoid group; the other division is formed by the carotenes. The name is from Greek: (), meaning "yellow", an ...
s and orange
beta-carotene are revealed. These pigments are present throughout the year, but the red pigments, the
anthocyanin
Anthocyanins (), also called anthocyans, are solubility, water-soluble vacuole, vacuolar pigments that, depending on their pH, may appear red, purple, blue, or black. In 1835, the German pharmacist Ludwig Clamor Marquart named a chemical compou ...
s, are
synthesized ''de novo'' once roughly half of chlorophyll has been degraded. The
amino acid
Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 a ...
s released from degradation of light harvesting complexes are stored all winter in the tree's roots, branches, stems, and
trunk
Trunk may refer to:
Biology
* Trunk (anatomy), synonym for torso
* Trunk (botany), a tree's central superstructure, and the stem of woody plants
* Trunk of corpus callosum, in neuroanatomy
* Elephant trunk, the proboscis of an elephant
Comput ...
until next spring when they are recycled to re‑leaf the tree.
Pigments in algae
Algae are very diverse photosynthetic organisms, which differ from plants in that they are aquatic organisms, they do not present vascular tissue and do not generate an embryo. However, both types of organisms share the possession of photosynthetic pigments, which absorb and release energy that is later used by the cell. These pigments in addition to chlorophylls, are phycobiliproteins, fucoxanthins, xanthophylls and carotenes, which serve to trap the energy of light and lead it to the primary pigment, which is responsible for initiating oxygenic photosynthesis reactions.
Algal phototrophs such as
dinoflagellates
The Dinoflagellates (), also called Dinophytes, are a monophyletic group of single-celled eukaryotes constituting the phylum Dinoflagellata and are usually considered protists. Dinoflagellates are mostly marine plankton, but they are also commo ...
use
peridinin
Peridinin is a light-harvesting apocarotenoid, a pigment associated with chlorophyll and found in the peridinin-chlorophyll-protein (PCP) light-harvesting complex in dinoflagellates, best studied in '' Amphidinium carterae''.
Biological signific ...
as a light harvesting pigment. While carotenoids can be found complexed within chlorophyll-binding proteins such as the
photosynthetic reaction center
A photosynthetic reaction center is a complex of several proteins, biological pigments, and other co-factors that together execute the primary energy conversion reactions of photosynthesis. Molecular excitations, either originating directly from ...
s and
light-harvesting complexes, they also are found within dedicated carotenoid proteins such as the
orange carotenoid protein
Orange carotenoid protein (OCP) is a water-soluble protein which plays a role in photoprotection in diverse cyanobacteria. It is the only photoactive protein known to use a carotenoid as the photochemistry, photoresponsive chromophore. The protein ...
of cyanobacteria.
Pigments in bacteria
Bacteria produce pigments such as
carotenoid
Carotenoids () are yellow, orange, and red organic pigments that are produced by plants and algae, as well as several bacteria, archaea, and fungi. Carotenoids give the characteristic color to pumpkins, carrots, parsnips, corn, tomatoes, cana ...
s,
melanin
Melanin (; ) is a family of biomolecules organized as oligomers or polymers, which among other functions provide the pigments of many organisms. Melanin pigments are produced in a specialized group of cells known as melanocytes.
There are ...
,
violacein
Violacein is a naturally-occurring bis-indole pigment with antibiotic (anti-bacterial, anti-viral, anti-fungal and anti-tumor) properties. Violacein is produced by several species of bacteria, including ''Chromobacterium violaceum'', and gives th ...
,
prodigiosin
Prodigiosin is a red dye produced by many strains of the bacterium ''Serratia marcescens'', as well as other Gram-negative, gamma proteobacteria such as ''Vibrio psychroerythrus'' and ''Hahella chejuensis''. It is responsible for the pink tint occ ...
,
pyocyanin
Pyocyanin (PCN−) is one of the many toxic compounds produced and secreted by the Gram negative bacterium ''Pseudomonas aeruginosa''. Pyocyanin is a blue secondary metabolite, turning red below pH 4.9, with the ability to oxidise and reduce other ...
,
actinorhodin
Actinorhodin is a benzoisochromanequinone dimer (chemistry), dimer polyketide antibiotic produced by ''Streptomyces coelicolor''. The gene cluster responsible for actinorhodin production contains the biosynthetic enzymes and genes responsible for ...
, and
zeaxanthin
Zeaxanthin is one of the most common carotenoids in nature, and is used in the xanthophyll cycle. Synthesized in plants and some micro-organisms, it is the pigment that gives paprika (made from bell peppers), corn, saffron, goji ( wolfberries) ...
.
Cyanobacteria
Cyanobacteria ( ) are a group of autotrophic gram-negative bacteria that can obtain biological energy via oxygenic photosynthesis. The name "cyanobacteria" () refers to their bluish green (cyan) color, which forms the basis of cyanobacteri ...
produce
phycocyanin
Phycocyanin is a pigment-protein complex from the light-harvesting phycobiliprotein family, along with allophycocyanin and phycoerythrin. It is an accessory pigment to chlorophyll. All phycobiliproteins are water-soluble, so they cannot exist ...
,
phycoerythrin
Phycoerythrin (PE) is a red protein-pigment complex from the light-harvesting phycobiliprotein family, present in cyanobacteria, red algae and Cryptomonad, cryptophytes, accessory to the main chlorophyll pigments responsible for photosynthesis.The ...
,
scytonemin
Scytonemin is a secondary metabolite and an extracellular matrix (sheath) pigment synthesized by many strains of cyanobacteria, including ''Nostoc'', '' Scytonema'', ''Calothrix'', '' Lyngbya'', ''Rivularia'', '' Chlorogloeopsis'', and ''Hyella'' ...
,
chlorophyll a
}
Chlorophyll ''a'' is a specific form of chlorophyll used in oxygenic photosynthesis. It absorbs most energy from wavelengths of violet-blue and orange-red light, and it is a poor absorber of green and near-green portions of the spectrum. Chlorop ...
,
chlorophyll d
Chlorophyll ''d'' (Chl ''d'') is a form of chlorophyll, identified by Harold Strain and Winston Manning in 1943. It was unambiguously identified in '' Acaryochloris marina'' in the 1990s. It is present in cyanobacteria which use energy captured ...
, and chlorophyll f. Purple sulfur bacteria produce
bacteriochlorophyll a
Bacteriochlorophylls (BChl) are photosynthetic pigments that occur in various phototrophic bacteria. They were discovered by C. B. van Niel in 1932. They are related to chlorophylls, which are the primary pigments in plants, algae, and cyanobacte ...
and bacteriochlorophyll b. In cyanobacteria, many other carotenoids exist such as
canthaxanthin,
myxoxanthophyll,
synechoxanthin, and
echinenone
Echinenone is a xanthophyll, with formula C40H54O. It is found in some cyanobacteria. It is synthesized from β-carotene by the enzyme beta-carotene ketolase (or CrtW). It has also been isolated from sea urchins
Sea urchins or urchins () ar ...
.
Pigments in animals
Pigmentation is used by many animals for protection, by means of
camouflage
Camouflage is the use of any combination of materials, coloration, or illumination for concealment, either by making animals or objects hard to see, or by disguising them as something else. Examples include the leopard's spotted coat, the b ...
,
mimicry
In evolutionary biology, mimicry is an evolved resemblance between an organism and another object, often an organism of another species. Mimicry may evolve between different species, or between individuals of the same species. In the simples ...
, or
warning coloration
Aposematism is the Advertising in biology, advertising by an animal, whether terrestrial or marine, to potential predation, predators that it is not worth attacking or eating. This unprofitability may consist of any defenses which make the pr ...
. Some animals including fish, amphibians and cephalopods use pigmented
chromatophore
Chromatophores are cells that produce color, of which many types are pigment-containing cells, or groups of cells, found in a wide range of animals including amphibians, fish, reptiles, crustaceans and cephalopod
A cephalopod is any member o ...
s to provide camouflage that varies to match the background.
Pigmentation is used in
signalling
A signal is both the process and the result of transmission of data over some media accomplished by embedding some variation. Signals are important in multiple subject fields including signal processing, information theory and biology.
In ...
between animals, such as in
courtship and reproductive behavior. For example, some
cephalopod
A cephalopod is any member of the molluscan Taxonomic rank, class Cephalopoda (Greek language, Greek plural , ; "head-feet") such as a squid, octopus, cuttlefish, or nautilus. These exclusively marine animals are characterized by bilateral symm ...
s use their chromatophores to communicate.
The
photopigment
Photopigments are unstable pigments that undergo a chemical change when they absorb light. The term is generally applied to the non-protein chromophore Moiety (chemistry), moiety of photosensitive chromoproteins, such as the pigments involved in ph ...
rhodopsin
Rhodopsin, also known as visual purple, is a protein encoded by the ''RHO'' gene and a G-protein-coupled receptor (GPCR). It is a light-sensitive receptor protein that triggers visual phototransduction in rod cells. Rhodopsin mediates dim ...
intercepts light as the first step in the perception of light.
Skin pigments such as
melanin
Melanin (; ) is a family of biomolecules organized as oligomers or polymers, which among other functions provide the pigments of many organisms. Melanin pigments are produced in a specialized group of cells known as melanocytes.
There are ...
may protect tissues from
sunburn
Sunburn is a form of radiation burn that affects living tissue, such as skin, that results from an overexposure to ultraviolet (UV) radiation, usually from the Sun. Common symptoms in humans and other animals include red or reddish skin tha ...
by
ultraviolet
Ultraviolet radiation, also known as simply UV, is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight and constitutes about 10% of ...
radiation.
However, some biological pigments in animals, such as
heme
Heme (American English), or haem (Commonwealth English, both pronounced /Help:IPA/English, hi:m/ ), is a ring-shaped iron-containing molecule that commonly serves as a Ligand (biochemistry), ligand of various proteins, more notably as a Prostheti ...
groups that help to carry oxygen in the blood, are colored as a result of happenstance. Their color does not have a protective or signalling function.
Pea aphids (''Acyrthosiphon pisum''),
two-spotted spider mites (''Tetranychus urticae''), and
gall midges
Cecidomyiidae is a family of flies known as gall midges or gall gnats. As the name implies, the larvae of most gall midges feed within plant tissue, creating abnormal plant growths called galls. Cecidomyiidae are very fragile small insects usu ...
(family Cecidomyiidae)
are the only known animals capable of synthesizing carotenoids. The presence of genes for synthesizing carotenoids in these arthropods has been attributed to independent
horizontal gene transfer
Horizontal gene transfer (HGT) or lateral gene transfer (LGT) is the movement of genetic material between organisms other than by the ("vertical") transmission of DNA from parent to offspring (reproduction). HGT is an important factor in the e ...
(HGT) events from fungi.
Diseases and conditions
A variety of diseases and abnormal conditions that involve pigmentation are in humans and animals, either from absence of or loss of pigmentation or pigment cells, or from the excess production of pigment.
*
Albinism
Albinism is the congenital absence of melanin in an animal or plant resulting in white hair, feathers, scales and skin and reddish pink or blue eyes. Individuals with the condition are referred to as albinos.
Varied use and interpretation of ...
is an inherited disorder characterized by total or partial loss of
melanin
Melanin (; ) is a family of biomolecules organized as oligomers or polymers, which among other functions provide the pigments of many organisms. Melanin pigments are produced in a specialized group of cells known as melanocytes.
There are ...
. Humans and animals that suffer from albinism are called "albinistic" (the term "albino" is also sometimes used, but may be considered offensive when applied to people).
*
Lamellar ichthyosis
Lamellar ichthyosis, also known as ichthyosis lamellaris and nonbullous congenital ichthyosis, is a rare inherited skin disorder, affecting around 1 in 600,000 people.
Presentation
Affected babies are born in a collodion membrane – a shiny, wa ...
, also called "fish scale disease", is an inherited condition in which one symptom is excess production of melanin. The skin is darker than normal, and is characterized by darkened, scaly, dry patches.
*
Melasma
Melasma (also known as chloasma faciei,James, William; Berger, Timothy; Elston, Dirk (2005). ''Andrews' Diseases of the Skin: Clinical Dermatology''. (10th ed.). Saunders. . or the mask of pregnancy when present in pregnant women) is a tan or dar ...
is a condition in which dark brown patches of pigment appear on the face, influenced by hormonal changes. When it occurs during a pregnancy, this condition is called ''the mask of pregnancy''.
* ''ocular pigmentation'' is an accumulation of pigment in the eye, and may be caused by
latanoprost
Latanoprost, sold under the brand name Xalatan among others, is a medication used to treat increased pressure inside the eye (intraocular pressure). This includes ocular hypertension and open-angle glaucoma. Latanaprost is applied as eye d ...
medication.
[ Page 146]
*
Vitiligo
Vitiligo (, ) is a chronic autoimmune disorder that causes patches of skin to lose pigment or color. The cause of vitiligo is unknown, but it may be related to immune system changes, genetic factors, stress, or sun exposure, and susceptibili ...
is a condition in which there is a loss of pigment-producing cells called
melanocytes
Melanocytes are melanin-producing neural crest-derived cells located in the bottom layer (the stratum basale) of the skin's epidermis, the middle layer of the eye (the uvea),
the inner ear,
vaginal epithelium, meninges,
bones,
and hea ...
in patches of skin.
Pigments in marine animals
Carotenoids and carotenoproteins
Carotenoid
Carotenoids () are yellow, orange, and red organic pigments that are produced by plants and algae, as well as several bacteria, archaea, and fungi. Carotenoids give the characteristic color to pumpkins, carrots, parsnips, corn, tomatoes, cana ...
s are the most common group of pigments found in nature. Over 600 different kinds of carotenoids are found in animals, plants, and microorganisms.
Marine animals are incapable of making their own carotenoids and thus rely on plants for these pigments. Carotenoproteins are especially common among marine animals. These complexes are responsible for the various colors (red, purple, blue, green, etc.) to these marine invertebrates for mating rituals and camouflage. There are two main types of carotenoproteins: Type A and Type B. Type A has carotenoids (chromogen) which are stoichiometrically associated with a simple protein (glycoprotein). The second type, Type B, has carotenoids which are associated with a lipo protein and is usually less stable. While Type A is commonly found in the surface (shells and skins) of marine invertebrates, Type B is usually in eggs, ovaries, and blood. The colors and characteristic absorption of these carotenoprotein complexes are based upon the chemical binding of the chromogen and the protein subunits.
For example, the blue carotenoprotein,
linckiacyanin has about 100-200 carotenoid molecules per every complex. In addition, the functions of these pigment-protein complexes also change their chemical structure as well. Carotenoproteins that are within the photosynthetic structure are more common, but complicated. Pigment-protein complexes that are outside of the photosynthetic system are less common, but have a simpler structure. For example, there are only two of these blue astaxanthin-proteins in the jellyfish, ''Velella velella'', contains only about 100 carotenoids per complex.
A common carotenoid in animals is
astaxanthin
Astaxanthin is a keto- carotenoid within a group of chemical compounds known as carotenoids or terpenes. Astaxanthin is a metabolite of zeaxanthin and canthaxanthin, containing both hydroxyl and ketone functional groups.
It is a lipid-solu ...
, which gives off a purple-blue and green pigment. Astaxanthin's color is formed by creating complexes with proteins in a certain order. For example, the crustochrin has approximately 20 astaxanthin molecules bonded with protein. When the complexes interact by exciton-exciton interaction, it lowers the absorbance maximum, changing the different color pigments.
In lobsters, there are various types of astaxanthin-protein complexes present. The first one is
crustacyanin
Crustacyanin is a carotenoprotein biological pigment found in the exoskeleton of lobsters and blue crabs and responsible for their blue colour. β-Crustacyanin (β-CR), is composed of two stacked astaxanthin carotenoids that absorb at λ = 580– ...
(max 632 nm), a slate-blue pigment found in the lobster's carapace. The second one is crustochrin (max 409), a yellow pigment which is found on the outer layer of the carapace. Lastly, the lipoglycoprotein and ovoverdin forms a bright green pigment that is usually present in the outer layers of the carapace and the lobster eggs.
Tetrapyrroles
Tetrapyrroles
Tetrapyrroles are a class of chemical compounds that contain four pyrrole or pyrrole-like rings. The pyrrole/pyrrole derivatives are linked by ( or units), in either a linear or a cyclic fashion. Pyrroles are a five-atom ring with four carbon ...
are the next most common group of pigments. They have four pyrrole rings, each ring consisting of C
4H
4NH. The main role of the tetrapyrroles is their connection in the biological oxidation process. Tetrapyrroles have a major role in electron transport and act as a replacement for many enzymes. They also have a role in the pigmentation of the marine organism's tissues.
Melanin
Melanin
Melanin (; ) is a family of biomolecules organized as oligomers or polymers, which among other functions provide the pigments of many organisms. Melanin pigments are produced in a specialized group of cells known as melanocytes.
There are ...
is a class of compounds that serves as a pigment with different structures responsible for dark, tan, yellowish / reddish pigments in marine animals. It is produced as the amino acid tyrosine is converted into melanin, which is found in the skin, hair, and eyes. Derived from aerobic oxidation of phenols, they are polymers.
There are several different types of melanins considering that they are an aggregate of smaller component molecules, such as nitrogen containing melanins. There are two classes of pigments: black and brown insoluble eumelanins, which are derived from aerobic oxidation of tyrosine in the presence of tyrosinase, and the alkali-soluble phaeomelanins which range from a yellow to red brown color, arising from the deviation of the eumelanin pathway through the intervention of cysteine and/or glutathione. Eumelanins are usually found in the skin and eyes. Several different melanins include melanoprotein (dark brown melanin that is stored in high concentrations in the ink sac of the cuttlefish Sepia Officianalis), echinoidea (found in sand dollars, and the hearts of sea urchins), holothuroidea (found in sea cucumbers), and ophiuroidea (found in brittle and snake stars). These melanins are possibly polymers which arise from the repeated coupling of simple bi-polyfunctional monomeric intermediates, or of high molecular weights. The compounds benzothiazole and tetrahydroisoquinoline ring systems act as UV-absorbing compounds.
Bioluminescence
The only light source in the deep sea, marine animals give off visible light energy called
bioluminescence
Bioluminescence is the emission of light during a chemiluminescence reaction by living organisms. Bioluminescence occurs in multifarious organisms ranging from marine vertebrates and invertebrates, as well as in some Fungus, fungi, microorgani ...
,
[Webexhibits.]
Bioluminescence , Causes of Color
" WebExhibits. Web. 2 June 2010. a subset of
chemiluminescence
Chemiluminescence (also chemoluminescence) is the emission of light (luminescence) as the result of a chemical reaction, i.e. a chemical reaction results in a flash or glow of light. A standard example of chemiluminescence in the laboratory se ...
. This is the chemical reaction in which chemical energy is converted to light energy. It is estimated that 90% of deep-sea animals produce some sort of bioluminescence. Considering that a large proportion of the visible light spectrum is absorbed before reaching the deep sea, most of the emitted light from the sea-animals is blue and green. However, some species may emit a red and infrared light, and there has even been a genus that is found to emit yellow bioluminescence. The organ that is responsible for the emission of bioluminescence is known as photophores. This type is only present in squid and fish, and is used to illuminate their ventral surfaces, which disguise their silhouettes from predators. The uses of the photophores in the sea-animals differ, such as lenses for controlling intensity of color, and the intensity of the light produced. Squids have both photophores and chromatophores which controls both of these intensities. Another thing that is responsible for the emission of bioluminescence, which is evident in the bursts of light that
jellyfish
Jellyfish, also known as sea jellies or simply jellies, are the #Life cycle, medusa-phase of certain gelatinous members of the subphylum Medusozoa, which is a major part of the phylum Cnidaria. Jellyfish are mainly free-swimming marine animal ...
emit, start with a luciferin (a photogen) and ends with the light emitter (a photagogikon.) Luciferin, luciferase, salt, and oxygen react and combine to create a single unit called photo-proteins, which can produce light when reacted with another molecule such as Ca+. Jellyfish use this as a defense mechanism; when a smaller predator is attempting to devour a jellyfish, it will flash its lights, which would therefore lure a larger predator and chase the smaller predator away. It is also used as mating behavior.
In reef-building coral and sea anemones, they fluoresce; light is absorbed at one wavelength, and re-emitted at another. These pigments may act as natural sunscreens, aid in photosynthesis, serve as warning coloration, attract mates, warn rivals, or confuse predators.
Chromatophores
Chromatophore
Chromatophores are cells that produce color, of which many types are pigment-containing cells, or groups of cells, found in a wide range of animals including amphibians, fish, reptiles, crustaceans and cephalopod
A cephalopod is any member o ...
s are color pigment changing cells that are directly stimulated by central motor neurons. They are primarily used for quick environmental adaptation for camouflaging. The process of changing the color pigment of their skin relies on a single highly developed chromatophore cell and many muscles, nerves, glial and sheath cells. Chromatophores contract and contain vesicles that stores three different liquid pigments. Each color is indicated by the three types of chromatophore cells:
erythrophore
Chromatophores are cells that produce color, of which many types are pigment-containing cells, or groups of cells, found in a wide range of animals including amphibians, fish, reptiles, crustaceans and cephalopods. Mammals and birds, in contrast ...
s,
melanophore
Chromatophores are cells that produce color, of which many types are pigment-containing cells, or groups of cells, found in a wide range of animals including amphibians, fish, reptiles, crustaceans and cephalopods. Mammals and birds, in contrast ...
s, and
xanthophore
Chromatophores are cells that produce color, of which many types are pigment-containing cells, or groups of cells, found in a wide range of animals including amphibians, fish, reptiles, crustaceans and cephalopods. Mammals and birds, in contrast ...
s. The first type is the erythrophores, which contains reddish pigments such as carotenoids and pteridines. The second type is the melanophores, which contains black and brown pigments such as the melanins. The third type is the xanthophores which contains yellow pigments in the forms of carotenoids. The various colors are made by the combination of the different layers of the chromatophores. These cells are usually located beneath the skin or scale the animals. There are two categories of colors generated by the cell – biochromes and
schematochromes. Biochromes are colors chemically formed microscopic, natural pigments. Their chemical composition is created to take in some color of light and reflect the rest. In contrast, schematochromes (structural colors) are colors created by light reflections from a colorless surface and refractions by tissues. Schematochromes act like prisms, refracting and dispersing visible light to the surroundings, which will eventually reflect a specific combination of colors. These categories are determined by the movement of pigments within the chromatophores. The physiological color changes are short-term and fast, found in fishes, and are a result from an animal's response to a change in the environment. In contrast, the morphological color changes are long-term changes, occurs in different stages of the animal, and are due to the change of numbers of chromatophores. To change the color pigments, transparency, or opacity, the cells alter in form and size, and stretch or contract their outer covering.
Photo-protective pigments
Due to damage from UV-A and UV-B, marine animals have evolved to have compounds that absorb UV light and act as sunscreen. Mycosporine-like amino acids (MAAs) can absorb UV rays at 310-360 nm. Melanin is another well-known UV-protector. Carotenoids and photopigments both indirectly act as photo-protective pigments, as they quench oxygen free-radicals. They also supplement photosynthetic pigments that absorb light energy in the blue region.
Defensive role of pigments
It's known that animals use their color patterns to warn off predators, however it has been observed that a sponge pigment mimicked a chemical which involved the regulation of moulting of an amphipod that was known to prey on sponges. So whenever that amphipod eats the sponge, the chemical pigments prevents the moulting, and the amphipod eventually dies.
Environmental influence on color
Coloration in invertebrates varies based on the depth, water temperature, food source, currents, geographic location, light exposure, and sedimentation. For example, the amount of carotenoid a certain sea anemone decreases as we go deeper into the ocean. Thus, the marine life that resides on deeper waters is less brilliant than the organisms that live in well-lit areas due to the reduction of pigments. In the colonies of the colonial ascidian-cyanophyte symbiosis Trididemnum solidum, their colors are different depending on the light regime in which they live. The colonies that are exposed to full sunlight are heavily calcified, thicker, and are white. In contrast the colonies that live in shaded areas have more phycoerythrin (pigment that absorbs green) in comparison to phycocyanin (pigment that absorbs red), thinner, and are purple. The purple color in the shaded colonies are mainly due to the phycobilin pigment of the algae, meaning the variation of exposure in light changes the colors of these colonies.
Adaptive coloration
Aposematism is the warning coloration to signal potential predators to stay away. In many chromodorid nudibranchs, they take in distasteful and toxic chemicals emitted from sponges and store them in their repugnatorial glands (located around the mantle edge). Predators of nudibranchs have learned to avoid these certain nudibranchs based on their bright color patterns. Preys also protect themselves by their toxic compounds ranging from a variety of organic and inorganic compounds.
Physiological activities
Pigments of marine animals serve several different purposes, other than defensive roles. Some pigments are known to protect against UV (see photo-protective pigments.) In the nudibranch Nembrotha Kubaryana, tetrapyrrole pigment 13 has been found to be a potent antimicrobial agent. Also in this creature, tamjamines A, B, C, E, and F has shown antimicrobial, antitumor, and immunosuppressive activities.
Sesquiterpenoids are recognized for their blue and purple colors, but it has also been reported to exhibit various bioactivities such as antibacterial, immunoregulating, antimicrobial, and cytotoxic, as well as the inhibitory activity against cell division in the fertilized sea urchin and ascidian eggs. Several other pigments have been shown to be cytotoxic. In fact, two new carotenoids that were isolated from a sponge called Phakellia stelliderma showed mild cytotoxicity against mouse leukemia cells. Other pigments with medical involvements include
scytonemin
Scytonemin is a secondary metabolite and an extracellular matrix (sheath) pigment synthesized by many strains of cyanobacteria, including ''Nostoc'', '' Scytonema'', ''Calothrix'', '' Lyngbya'', ''Rivularia'', '' Chlorogloeopsis'', and ''Hyella'' ...
, topsentins, and debromohymenialdisine have several lead compounds in the field of inflammation, rheumatoid arthritis and osteoarthritis respectively. There's evidence that topsentins are potent mediators of immunogenic inflation, and topsentin and scytonemin are potent inhibitors of neurogenic inflammation.
Uses
Pigments may be extracted and used as
dye
Juan de Guillebon, better known by his stage name DyE, is a French musician. He is known for the music video of the single "Fantasy
Fantasy is a genre of speculative fiction that involves supernatural or Magic (supernatural), magical ele ...
s.
Pigments (such as astaxanthin and lycopene) are used as dietary supplements.
See also
*
Photosynthetic pigment
A photosynthetic pigment (accessory pigment; chloroplast pigment; antenna pigment) is a pigment that is present in chloroplasts or photosynthetic bacteria and captures the light energy necessary for photosynthesis.
List of photosynthetic pigmen ...
*
Human skin color
Human skin color ranges from the Dark skin, darkest brown to the Light skin, lightest hues. Differences in Human skin, skin color among individuals is caused by variation in pigmentation, which is largely the result of genetics (inherited from o ...
References
External links
*
*
{{Authority control
Biological pigments
Warning coloration