In
commutative algebra
Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Promi ...
, the deviations of a local ring ''R'' are certain
invariants ε
''i''(''R'') that measure how far the
ring
Ring may refer to:
* Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry
* To make a sound with a bell, and the sound made by a bell
:(hence) to initiate a telephone connection
Arts, entertainment and media Film and ...
is from being
regular
The term regular can mean normal or in accordance with rules. It may refer to:
People
* Moses Regular (born 1971), America football player
Arts, entertainment, and media Music
* "Regular" (Badfinger song)
* Regular tunings of stringed instrum ...
.
Definition
The deviations ε
''n'' of a
local ring In abstract algebra, more specifically ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on varieties or manifolds, or of algebraic ...
''R'' with
residue field In mathematics, the residue field is a basic construction in commutative algebra. If ''R'' is a commutative ring and ''m'' is a maximal ideal, then the residue field is the quotient ring ''k'' = ''R''/''m'', which is a field. Frequently, ''R'' is ...
''k'' are non-negative integers defined in terms of its
Poincaré series ''P''(''t'') by
:
The zeroth deviation ε
0 is the
embedding dimension
This is a glossary of commutative algebra.
See also list of algebraic geometry topics, glossary of classical algebraic geometry, glossary of algebraic geometry, glossary of ring theory and glossary of module theory.
In this article, all rings ...
of ''R'' (the dimension of its tangent space). The first deviation ε
1 vanishes exactly when the ring ''R'' is a
regular local ring In commutative algebra, a regular local ring is a Noetherian local ring having the property that the minimal number of generators of its maximal ideal is equal to its Krull dimension. In symbols, let ''A'' be a Noetherian local ring with maximal id ...
, in which case all the higher deviations also vanish. The second deviation ε
2 vanishes exactly when the ring ''R'' is a
complete intersection ring, in which case all the higher deviations vanish.
References
*
Commutative algebra
{{abstract-algebra-stub