Finite Pointset Method
   HOME

TheInfoList



OR:

In
applied mathematics Applied mathematics is the application of mathematics, mathematical methods by different fields such as physics, engineering, medicine, biology, finance, business, computer science, and Industrial sector, industry. Thus, applied mathematics is a ...
, the finite pointset method (FPM) is a general approach for the numerical solution of problems in
continuum mechanics Continuum mechanics is a branch of mechanics that deals with the deformation of and transmission of forces through materials modeled as a ''continuous medium'' (also called a ''continuum'') rather than as discrete particles. Continuum mec ...
, such as the simulation of
fluid flow In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids – liquids and gases. It has several subdisciplines, including (the study of air and other gases in motion ...
s. In this approach the medium is represented by a finite set of points, each endowed with the relevant local properties of the medium such as
density Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
,
velocity Velocity is a measurement of speed in a certain direction of motion. It is a fundamental concept in kinematics, the branch of classical mechanics that describes the motion of physical objects. Velocity is a vector (geometry), vector Physical q ...
,
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and eve ...
, and
temperature Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
. The sampling points can move with the medium, as in the Lagrangian approach to fluid dynamics or they may be fixed in space while the medium flows through them, as in the Eulerian approach. A mixed Lagrangian-Eulerian approach may also be used. The Lagrangian approach is also known (especially in the
computer graphics Computer graphics deals with generating images and art with the aid of computers. Computer graphics is a core technology in digital photography, film, video games, digital art, cell phone and computer displays, and many specialized applications. ...
field) as
particle method Particle methods is a widely used class of numerical algorithms in scientific computing. Its application ranges from computational fluid dynamics (CFD) over molecular dynamics (MD) to discrete element methods. History One of the earliest partic ...
. Finite pointset methods are meshfree methods and therefore are easily adapted to domains with complex and/or time-evolving geometries and moving phase boundaries (such as a liquid splashing into a container, or the blowing of a glass bottle) without the software complexity that would be required to handle those features with topological data structures. They can be useful in non-linear problems involving
viscous Viscosity is a measure of a fluid's rate-dependent resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of ''thickness''; for example, syrup h ...
fluids,
heat In thermodynamics, heat is energy in transfer between a thermodynamic system and its surroundings by such mechanisms as thermal conduction, electromagnetic radiation, and friction, which are microscopic in nature, involving sub-atomic, ato ...
and
mass transfer Mass transfer is the net movement of mass from one location (usually meaning stream, phase, fraction, or component) to another. Mass transfer occurs in many processes, such as absorption, evaporation, drying, precipitation, membrane filtra ...
, linear and non-linear
elastic Elastic is a word often used to describe or identify certain types of elastomer, Elastic (notion), elastic used in garments or stretch fabric, stretchable fabrics. Elastic may also refer to: Alternative name * Rubber band, ring-shaped band of rub ...
or
plastic deformation In engineering, deformation (the change in size or shape of an object) may be ''elastic'' or ''plastic''. If the deformation is negligible, the object is said to be ''rigid''. Main concepts Occurrence of deformation in engineering application ...
s, etc.


Description

In the simplest implementations, the finite point set is stored as an unstructured list of points in the medium. In the Lagrangian approach the points move with the medium, and points may be added or deleted in order to maintain a prescribed sampling density. The point density is usually prescribed by a ''smoothing length'' defined locally. In the Eulerian approach the points are fixed in space, but new points may be added where there is need for increased accuracy. So, in both approaches the nearest neighbors of a point are not fixed, and are determined again at each time step.


Advantages

This method has various advantages over grid-based techniques; for example, it can handle fluid domains, which change naturally, whereas grid based techniques require additional computational effort. The finite points have to completely cover the whole flow domain, i.e. the point cloud has to fulfill certain quality criteria (finite points are not allowed to form “holes” which means finite points have to find sufficiently numerous neighbours; also, finite points are not allowed to cluster; etc.). The finite point cloud is a geometrical basis, which allows for a numerical formulation making FPM a general finite difference idea applied to continuum mechanics. That especially means, if the point reduced to a regular cubic point grid, then FPM would reduce to a classical finite difference method. The idea of general finite differences also means that FPM is not based on a weak formulation like Galerkin's approach. Rather, FPM is a strong formulation which models differential equations by direct approximation of the occurring differential operators. The method used is a moving least squares idea which was especially developed for FPM.


History

In order to overcome the disadvantages of the classical methods many approaches have been developed to simulate such flows. A classical grid free Lagrangian method is Smoothed Particle Hydrodynamics (SPH), which was originally introduced to solve problems in astrophysics. It has since been extended to simulate the compressible Euler equations in fluid dynamics and applied to a wide range of problems. The method has also been extended to simulate inviscid incompressible free surface flows.. The implementation of the boundary conditions is the main problem of the SPH method. Another approach for solving fluid dynamic equations in a grid free framework is the moving least squares or least squares method. With this approach boundary conditions can be implemented in a natural way just by placing the finite points on boundaries and prescribing boundary conditions on them. The robustness of this method is shown by the simulation results in the field of airbag deployment in car industry. Here, the membrane (or boundary) of the airbag changes very rapidly in time and takes a quite complicated shape (Kuhnert et al. 2000). performed simulations of incompressible flows as the limit of the compressible
Navier–Stokes equations The Navier–Stokes equations ( ) are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician Georg ...
with some stiff equation of state. This approach was first used in to simulate incompressible free surface flows by SPH. The incompressible limit is obtained by choosing a very large speed of sound in the equation of state such that the Mach number becomes small. However, the large value of the speed of sound restricts the time step to be very small due to the CFL-condition. The projection method of
Chorin Chorin () is a municipality in the district of Barnim in Brandenburg, Germany. It is most famous for its cloister and for being situated within the Schorfheide-Chorin Biosphere Reserve. It is famous for its medieval Brick Gothic Chorin Abbey and ...
is a widely used approach to solve problems governed by the incompressible Navier–Stokes equation in a grid based structure. In , this method has been applied to a grid free framework with the help of the weighted least squares method. The scheme gives accurate results for the incompressible
Navier–Stokes equations The Navier–Stokes equations ( ) are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician Georg ...
. The occurring Poisson equation for the pressure field is solved by a grid free method. It has been shown that the Poisson equation can be solved accurately by this approach for any boundary conditions. The Poisson solver can be adapted to the weighted least squares approximation procedure with the condition that the Poisson equation and the boundary condition must be satisfied on each finite point. This is a local iteration procedure.


Software

* Nogrid points
MESHFREE


References

* * * * * * * * * {{DEFAULTSORT:Finite Pointset Method Numerical differential equations Computational fluid dynamics