Field Effect (chemistry)
   HOME

TheInfoList



OR:

A field effect is the
polarization Polarization or polarisation may refer to: Mathematics *Polarization of an Abelian variety, in the mathematics of complex manifolds *Polarization of an algebraic form, a technique for expressing a homogeneous polynomial in a simpler fashion by ...
of a
molecule A molecule is a group of two or more atoms that are held together by Force, attractive forces known as chemical bonds; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics, organic chemi ...
through space. The effect is a result of an
electric field An electric field (sometimes called E-field) is a field (physics), physical field that surrounds electrically charged particles such as electrons. In classical electromagnetism, the electric field of a single charge (or group of charges) descri ...
produced by
charge Charge or charged may refer to: Arts, entertainment, and media Films * ''Charge, Zero Emissions/Maximum Speed'', a 2011 documentary Music * ''Charge'' (David Ford album) * ''Charge'' (Machel Montano album) * '' Charge!!'', an album by The Aqu ...
localization in a molecule. This field, which is substituent and conformation dependent, can influence structure and reactivity by manipulating the location of electron density in bonds and/or the overall molecule. The polarization of a molecule through its bonds is a separate phenomenon known as induction. Field effects are relatively weak, and diminish rapidly with distance, but have still been found to alter molecular properties such as acidity.


Field sources

Field effects can arise from the electric dipole field of a bond containing an
electronegative Electronegativity, symbolized as , is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. An atom's electronegativity is affected by both its atomic number and the d ...
atom or electron-withdrawing substituent, as well as from an atom or substituent bearing a formal charge. The directionality of a dipole, and concentration of charge, can both define the shape of a molecule's
electric field An electric field (sometimes called E-field) is a field (physics), physical field that surrounds electrically charged particles such as electrons. In classical electromagnetism, the electric field of a single charge (or group of charges) descri ...
which will manipulate the localization of electron density toward or away from sites of interest, such as an acidic hydrogen. Field effects are typically associated with the alignment of a dipole field with respect to a reaction center. Since these are through space effects, the 3D structure of a molecule is an important consideration. A field may be interrupted by other bonds or atoms before propagating to a reactive site of interest. Atoms of differing electronegativities can move closer together resulting in bond polarization through space that mimics the inductive effect through bonds. Bicycloheptane and bicyclooctane (seen left) are pounds in which the change in acidity with substitution was attributed to the field effect. The C-X dipole is oriented away from the carboxylic acid group, and can draw electron density away because the molecule center is empty, with a low
dielectric constant The relative permittivity (in older texts, dielectric constant) is the permittivity of a material expressed as a ratio with the electric permittivity of a vacuum. A dielectric is an insulating material, and the dielectric constant of an insul ...
, so the electric field is able to propagate with minimal resistance.


Utility of effect

A dipole can align to stabilize or destabilize the formation or loss of a charge, thereby decreasing (if stabilized) or increasing (if destabilized) the activation barrier to a chemical event. Field effects can therefore tune the acidity or basicity of bonds within their fields by donating or withdrawing charge density. With respect to acidity, a common trend to note is that, inductively, an electron-withdrawing substituent in the vicinity of an acidic proton will lower the pKa (i.e. increase the acidity) and, correspondingly, an electron-donating substituent will raise the pKa. The reorganization of charge due to field effects will have the same result. An electric dipole field propagated through the space around, or in the middle of, a molecule in the direction of an acidic proton will decrease the acidity, while a dipole pointed away will increase the acidity and concomitantly elongate the X-H bond. These effects can therefore help to tune the acidity/basicity of a molecule to protonate/deprotonate a specific compound, or enhance hydrogen bond-donor ability for
molecular recognition Supramolecular chemistry refers to the branch of chemistry concerning Chemical species, chemical systems composed of a integer, discrete number of molecules. The strength of the forces responsible for spatial organization of the system range from w ...
or anion sensing applications. Field effects have also been shown in substituted arenes to dominate the electrostatic potential maps, which are maps of electron density used to explain intermolecular interactions.


Evidence for field effects

Localized electronic effects are a combination of inductive and field effects. Due to the similarity in these effects, it is difficult to separate their contributions to the electronic structure of a molecule. There is, however, a large body of literature devoted to developing an understanding of the relative significance of induction and field effects by analyzing related compounds in an attempt to quantify each effect based on the present substituents and molecular geometry. For example, the three compounds to the right, all
octane Octane is a hydrocarbon and also an alkane with the chemical formula C8H18, and the condensed structural formula CH3(CH2)6CH3. Octane has many structural isomers that differ by the location of branching in the carbon chain. One of these isomers ...
s, differ only in the number of linkers between the electron withdrawing group X and an acidic functional group, which are approximately the same spatial distance apart in each compound. It is known that an electron-withdrawing substituent will decrease the pKa of a given proton (i.e. increase the acidity) inductively. If induction was the dominant effect in these compounds, acidity should increase linearly with the number of available inductive pathways (linkers). However, the experimental data shows that effect on acidity in related octanes and
cubane Cubane is a synthetic hydrocarbon compound with the Chemical formula, formula . It consists of eight carbon atoms arranged at the corners of a Cube (geometry), cube, with one hydrogen atom attached to each carbon atom. A solid crystalline substanc ...
s is very similar, and therefore the dominant effect must be through space. In the cis-11,12-dichloro-9,10-dihydro-9,10-ethano-2-anthroic acid ''syn'' and ''anti'' isomers seen below and to the left, the chlorines provide a field effect. The concentration of negative charge on each chlorine has a through space effect which can be seen in the relative pKa values. When the chlorines are pointed over the carboxylic acid group, the pKa is higher because loss of a proton is less favorable due to the increase in negative charge in the area. Loss of a proton results in a negative charge which is less stable if there is already an inherent concentration of electrons. This can be attributed to a field effect because in the same compound with the chlorines pointed away from the acidic group the pKa is lower, and if the effect were inductive the conformational position would not matter.


References

{{Reflist, 30em Chemical properties Chemistry Electrostatics Electromagnetism Molecular physics Molecules Physical chemistry