Far-red
   HOME

TheInfoList



OR:

Far-red light is a range of light at the extreme red end of the
visible spectrum The visible spectrum is the spectral band, band of the electromagnetic spectrum that is visual perception, visible to the human eye. Electromagnetic radiation in this range of wavelengths is called ''visible light'' (or simply light). The optica ...
, just before
infrared Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
light. Usually regarded as the region between 700 and 750 nm
wavelength In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats. In other words, it is the distance between consecutive corresponding points of the same ''phase (waves ...
, it is dimly visible to human eyes. It is largely reflected or transmitted by
plant Plants are the eukaryotes that form the Kingdom (biology), kingdom Plantae; they are predominantly Photosynthesis, photosynthetic. This means that they obtain their energy from sunlight, using chloroplasts derived from endosymbiosis with c ...
s because of the absorbance spectrum of
chlorophyll Chlorophyll is any of several related green pigments found in cyanobacteria and in the chloroplasts of algae and plants. Its name is derived from the Greek words (, "pale green") and (, "leaf"). Chlorophyll allows plants to absorb energy ...
, and it is perceived by the plant photoreceptor phytochrome. However, some organisms can use it as a source of energy in photosynthesis. Far-red light also is used for vision by certain organisms such as some species of deep-sea fishes and mantis shrimp.


In horticulture

Plants perceive light through internal photoreceptors absorbing a specified wavelength signaling ( photomorphogenesis) or transferring the energy to a plant process (
photosynthesis Photosynthesis ( ) is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabo ...
). In plants, the photoreceptors cryptochrome and phototropin absorb radiation in the blue spectrum (B: λ=400–500 nm) and regulate internal signaling such as hypocotyl inhibition, flowering time, and phototropism. Additional receptors called phytochrome absorb radiation in the red (R: λ=660–730 nm) and far-red (FR: λ>730 nm) spectra and influence many aspects of plant development such as germination, seedling etiolation, transition to flowering, shade avoidance, and tropisms. Phytochrome has the ability to interchange its conformation based on the quantity or quality of light it perceives and does so via photoconversion from phytochrome red (Pr) to phytochrome far-red (Pfr). Pr is the inactive form of phytrochrome, ready to perceive red light. In a high R:FR environment, Pr changes conformation to the active form of phytochrome Pfr. Once active, Pfr translocates to the cellular nucleus, binds to phytochrome interacting factors (PIF), and targets the PIFs to the proteasome for degradation. Exposed to a low R:FR environment, Pfr absorbs FR and changes conformation back to the inactive Pr. The inactive conformation will remain in the cytosol, allowing PIFs to target their binding site on the genome and induce expression (i.e. shade avoidance through cellular elongation). FR irradiation can lead to compromised plant immunity and increased pathogen susceptibility. FR has long been considered a minimal input in photosynthesis. In the early 1970’s, PhD physicist and soil crop professor Dr. Keith J. McCree lobbied for a standard definition of photosynthetically active radiation (PAR: λ=400–700 nm) which did not include FR. More recently, scientists have provided evidence that a broader spectrum called photo-biologically active radiation (PBAR: λ=280–800 nm) is more applicable terminology. This range of wavelengths not only includes FR, but also UV-A and UV-B. The Emerson Effect established that the rate of photosynthesis in red and green algae was higher when exposed to R and FR than the sum of the two individually. This research laid the ground work for the elucidation of the dual photosystems in plants.
Photosystem I Photosystem I (PSI, or plastocyanin–ferredoxin oxidoreductase) is one of two photosystems in the Light-dependent reactions, photosynthetic light reactions of algae, plants, and cyanobacteria. Photosystem I is an integral membrane ...
(PSI) and photosystem II (PSII) work synergistically; through photochemical processes PSII transports electrons to PSI. Any imbalance between R and FR leads to unequal excitation between PSI and PSII, thereby reducing the efficiency of photochemistry.


See also

* Crown shyness


References


Citations


General sources

* {{color topics Color Optical spectrum