HOME

TheInfoList



OR:

In
geometric measure theory In mathematics, geometric measure theory (GMT) is the study of geometric properties of sets (typically in Euclidean space) through measure theory. It allows mathematicians to extend tools from differential geometry to a much larger class of ...
, Falconer's conjecture, named after Kenneth Falconer, is an
unsolved problem List of unsolved problems may refer to several notable conjectures or open problems in various academic fields: Natural sciences, engineering and medicine * Unsolved problems in astronomy * Unsolved problems in biology * Unsolved problems in chem ...
concerning the sets of
Euclidean distance In mathematics, the Euclidean distance between two points in Euclidean space is the length of a line segment between the two points. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, therefore o ...
s between points in compact d-dimensional spaces. Intuitively, it states that a set of points that is large in its
Hausdorff dimension In mathematics, Hausdorff dimension is a measure of ''roughness'', or more specifically, fractal dimension, that was first introduced in 1918 by mathematician Felix Hausdorff. For instance, the Hausdorff dimension of a single point is zero, o ...
must determine a set of distances that is large in measure. More precisely, if S is a compact set of points in d-dimensional
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean sp ...
whose Hausdorff dimension is strictly greater than d/2, then the
conjecture In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. Some conjectures, such as the Riemann hypothesis (still a conjecture) or Fermat's Last Theorem (a conjecture until proven in 1 ...
states that the set of distances between pairs of points in S must have nonzero
Lebesgue measure In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of ''n''-dimensional Euclidean space. For ''n'' = 1, 2, or 3, it coincides ...
.


Formulation and motivation

proved that
Borel set In mathematics, a Borel set is any set in a topological space that can be formed from open sets (or, equivalently, from closed sets) through the operations of countable union, countable intersection, and relative complement. Borel sets are name ...
s with Hausdorff dimension greater than (d+1)/2 have distance sets with nonzero measure. He motivated this result as a multidimensional generalization of the
Steinhaus theorem In the mathematical field of real analysis, the Steinhaus theorem states that the difference set of a set of positive measure contains an open neighbourhood of zero. It was first proved by Hugo Steinhaus. Statement Let ''A'' be a Lebesgue-measu ...
, a previous result of
Hugo Steinhaus Hugo Dyonizy Steinhaus ( ; ; January 14, 1887 – February 25, 1972) was a Polish mathematician and educator. Steinhaus obtained his PhD under David Hilbert at Göttingen University in 1911 and later became a professor at the Jan Kazimierz Un ...
proving that every set of
real number In mathematics, a real number is a number that can be used to measurement, measure a ''continuous'' one-dimensional quantity such as a distance, time, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small var ...
s with nonzero measure must have a difference set that contains an interval of the form (-\varepsilon,\varepsilon) for some \varepsilon>0. It may also be seen as a continuous analogue of the Erdős distinct distances problem, which states that large finite sets of points must have large numbers of distinct distances.


Partial results

proved that compact sets of points whose Hausdorff dimension is greater than \tfrac + \tfrac have distance sets with nonzero measure; for large values of d this approximates the threshold on Hausdorff dimension given by the Falconer conjecture. For points in the
Euclidean plane In mathematics, the Euclidean plane is a Euclidean space of dimension two. That is, a geometric setting in which two real quantities are required to determine the position of each point ( element of the plane), which includes affine notions ...
, Borel sets of Hausdorff dimension greater than 5/4 have distance sets with nonzero measure and, more strongly, they have a point such that the Lebesgue measure of the distances from the set to this point is positive. A variant of Falconer's conjecture states that, for points in the plane, a compact set whose Hausdorff dimension is greater than or equal to one must have a distance set of Hausdorff dimension one. This follows from the results on measure for sets of Hausdorff dimension greater than 5/4. For a compact planar set with Hausdorff dimension at least one, the distance set must have Hausdorff dimension at least 1/2.


Related conjectures

Proving a bound strictly greater than 1/2 for the dimension of the distance set in the case of compact planar sets with Hausdorff dimension at least one would be equivalent to resolving several other unsolved conjectures. These include a conjecture of Paul Erdős on the existence of Borel
subring In mathematics, a subring of ''R'' is a subset of a ring that is itself a ring when binary operations of addition and multiplication on ''R'' are restricted to the subset, and which shares the same multiplicative identity as ''R''. For those ...
s of the real numbers with fractional Hausdorff dimension, and a variant of the Kakeya set problem on the Hausdorff dimension of sets such that, for every possible direction, there is a line segment whose intersection with the set has high Hausdorff dimension. These conjectures were solved by Bourgain.


Other distance functions

For non-Euclidean distance functions in the plane defined by polygonal norms, the analogue of the Falconer conjecture is false: there exist sets of Hausdorff dimension two whose distance sets have measure zero..


References

{{reflist Measure theory Dimension theory Metric geometry Conjectures Unsolved problems in geometry