HOME

TheInfoList



OR:

The faint young Sun paradox or faint young Sun problem describes the apparent contradiction between observations of liquid water early in Earth's history and the astrophysical expectation that the
Sun The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light a ...
's output would have been only 70 percent as intense during that epoch as it is during the modern epoch. The paradox is this: with the young Sun's output at only 70 percent of its current output, early Earth would be expected to be completely frozen, but early Earth seems to have had liquid water and supported life. The issue was raised by astronomers
Carl Sagan Carl Edward Sagan (; ; November 9, 1934December 20, 1996) was an American astronomer, planetary scientist and science communicator. His best known scientific contribution is his research on the possibility of extraterrestrial life, including e ...
and George Mullen in 1972. Proposed resolutions of this paradox have taken into account
greenhouse effect The greenhouse effect occurs when greenhouse gases in a planet's atmosphere insulate the planet from losing heat to space, raising its surface temperature. Surface heating can happen from an internal heat source (as in the case of Jupiter) or ...
s, changes to planetary
albedo Albedo ( ; ) is the fraction of sunlight that is Diffuse reflection, diffusely reflected by a body. It is measured on a scale from 0 (corresponding to a black body that absorbs all incident radiation) to 1 (corresponding to a body that reflects ...
, astrophysical influences, or combinations of these suggestions. The predominant theory is that the
greenhouse gas Greenhouse gases (GHGs) are the gases in the atmosphere that raise the surface temperature of planets such as the Earth. Unlike other gases, greenhouse gases absorb the radiations that a planet emits, resulting in the greenhouse effect. T ...
carbon dioxide contributed most to the warming of the Earth.


Solar evolution

Models of
stellar structure Stellar structure models describe the internal structure of a star in detail and make predictions about the luminosity, the color and the future evolution of the star. Different classes and ages of stars have different internal structures, refle ...
, especially the standard solar model predict a brightening of the Sun. The brightening is caused by a decrease in the number of particles per unit mass due to
nuclear fusion Nuclear fusion is a nuclear reaction, reaction in which two or more atomic nuclei combine to form a larger nuclei, nuclei/neutrons, neutron by-products. The difference in mass between the reactants and products is manifested as either the rele ...
in the Sun's core, from four protons and electrons each to one helium nucleus and two electrons. Fewer particles would exert less pressure. A collapse under the enormous gravity is prevented by an increase in temperature, which is both cause and effect of a higher rate of
nuclear fusion Nuclear fusion is a nuclear reaction, reaction in which two or more atomic nuclei combine to form a larger nuclei, nuclei/neutrons, neutron by-products. The difference in mass between the reactants and products is manifested as either the rele ...
. More recent modeling studies have shown that the Sun is currently 1.4 times as bright today than it was 4.6 billion years ago (Ga), and that the brightening has accelerated considerably. At the
surface A surface, as the term is most generally used, is the outermost or uppermost layer of a physical object or space. It is the portion or region of the object that can first be perceived by an observer using the senses of sight and touch, and is ...
of the Sun, more fusion power means a higher
solar luminosity The solar luminosity () is a unit of radiant flux (Power (physics), power emitted in the form of photons) conventionally used by astronomers to measure the luminosity of stars, galaxy, galaxies and other celestial objects in terms of the output of ...
(via slight increases in temperature and radius), which is termed radiative forcing.


Theories


Greenhouse gases

Sagan and Mullen suggested during their descriptions of the paradox that it might be solved by high concentrations of ammonia gas, NH3. However, it has since been shown that while ammonia is an effective greenhouse gas, it is easily destroyed photochemically in the atmosphere and converted to
nitrogen Nitrogen is a chemical element; it has Symbol (chemistry), symbol N and atomic number 7. Nitrogen is a Nonmetal (chemistry), nonmetal and the lightest member of pnictogen, group 15 of the periodic table, often called the Pnictogen, pnictogens. ...
(N2) and
hydrogen Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
(H2) gases. It was suggested (again by Sagan) that a photochemical haze could have prevented this destruction of ammonia and allowed it to continue acting as a greenhouse gas during this time; however, by 2001, this idea was tested using a photochemical model and discounted. Furthermore, such a haze is thought to have cooled Earth's surface beneath it and counteracted the greenhouse effect. Around 2010, scholars at the
University of Colorado The University of Colorado (CU) is a system of public universities in Colorado. It consists of four institutions: the University of Colorado Boulder, the University of Colorado Colorado Springs, the University of Colorado Denver, and the U ...
revived the idea, arguing that the ammonia hypothesis is a viable contributor if the haze formed a fractal pattern. It is now thought that
carbon dioxide Carbon dioxide is a chemical compound with the chemical formula . It is made up of molecules that each have one carbon atom covalent bond, covalently double bonded to two oxygen atoms. It is found in a gas state at room temperature and at norma ...
was present in higher concentrations during this period of lower solar radiation. It was first proposed and tested as part of Earth's atmospheric evolution in the late 1970s. An atmosphere that contained about 1,000 times the present atmospheric level (or PAL) was found to be consistent with the evolutionary path of Earth's
carbon cycle The carbon cycle is a part of the biogeochemical cycle where carbon is exchanged among the biosphere, pedosphere, geosphere, hydrosphere, and atmosphere of Earth. Other major biogeochemical cycles include the nitrogen cycle and the water cycl ...
and solar evolution. The primary mechanism for attaining such high CO2 concentrations is the carbon cycle. On large timescales, the inorganic branch of the carbon cycle, which is known as the carbonate–silicate cycle is responsible for determining the partitioning of CO2 between the atmosphere and the surface of Earth. In particular, during a time of low surface temperatures, rainfall and
weathering Weathering is the deterioration of rocks, soils and minerals (as well as wood and artificial materials) through contact with water, atmospheric gases, sunlight, and biological organisms. It occurs '' in situ'' (on-site, with little or no move ...
rates would be reduced, allowing for the build-up of carbon dioxide in the atmosphere on timescales of 0.5 million years. Specifically, using 1-D models, which represent Earth as a single point (instead of something that varies across 3 dimensions) scientists have determined that at 4.5 Ga, with a 30% dimmer Sun, a minimum partial pressure of 0.1 bar of CO2 is required to maintain an above-freezing surface temperature; 10 bar of CO2 has been suggested as a plausible upper limit. The amount of carbon dioxide levels is still under debate. In 2001, Sleep and Zahnle suggested that increased weathering on the sea floor on a young, tectonically active Earth could have reduced carbon dioxide levels. Then in 2010, Rosing et al. analyzed marine sediments called banded iron formations and found large amounts of various iron-rich minerals, including
magnetite Magnetite is a mineral and one of the main iron ores, with the chemical formula . It is one of the iron oxide, oxides of iron, and is ferrimagnetism, ferrimagnetic; it is attracted to a magnet and can be magnetization, magnetized to become a ...
(Fe3O4), an oxidized mineral alongside
siderite Siderite is a mineral composed of iron(II) carbonate (FeCO3). Its name comes from the Ancient Greek word (), meaning "iron". A valuable iron ore, it consists of 48% iron and lacks sulfur and phosphorus. Zinc, magnesium, and manganese commonly ...
(FeCO3), a reduced mineral and saw that they formed during the first half of Earth's history (and not afterward). The minerals' relative coexistence suggested an analogous balance between CO2 and H2. In the analysis, Rosing et al. connected the atmospheric H2 concentrations with regulation by biotic methanogenesis. Anaerobic, single-celled organisms that produced
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The abundance of methane on Earth makes ...
(CH4) may therefore have contributed to the warming in addition to carbon dioxide.


Tidal heating

The
Moon The Moon is Earth's only natural satellite. It Orbit of the Moon, orbits around Earth at Lunar distance, an average distance of (; about 30 times Earth diameter, Earth's diameter). The Moon rotation, rotates, with a rotation period (lunar ...
was originally much closer to the Earth, which rotated faster than it does today, resulting in greater tidal heating than experienced today. Original estimates found that even early tidal heating would be minimal, perhaps 0.02 watts per square meter. (For comparison, the solar energy incident on the Earth's atmosphere is on the order of 1,000 watts per square meter.) However, around 2021, a team led by René Heller in Germany argued that such estimates were simplistic and that in some plausible models tidal heating might have contributed on the order of 10 watts per square meter and increased the equilibrium temperature by up to five degrees Celsius on a timescale of 100 million years. Such a contribution would partially resolve the paradox but is insufficient to solve the faint young paradox on its own without additional factors such as greenhouse heating. The underlying assumption of Moon's formation just outside of the
Roche limit In celestial mechanics, the Roche limit, also called Roche radius, is the distance from a celestial body within which a second celestial body, held together only by its own force of gravity, will disintegrate because the first body's tidal force ...
is not certain, however: a magnetized disk of debris could have transported
angular momentum Angular momentum (sometimes called moment of momentum or rotational momentum) is the rotational analog of Momentum, linear momentum. It is an important physical quantity because it is a Conservation law, conserved quantity – the total ang ...
leading to a less massive Moon in a higher orbit.


Cosmic rays

A minority view propounded by the Israeli-American physicist Nir Shaviv uses climatological influences of
solar wind The solar wind is a stream of charged particles released from the Sun's outermost atmospheric layer, the Stellar corona, corona. This Plasma (physics), plasma mostly consists of electrons, protons and alpha particles with kinetic energy betwee ...
combined with a hypothesis of Danish physicist Henrik Svensmark for a cooling effect of
cosmic rays Cosmic rays or astroparticles are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar ...
. According to Shaviv, the early Sun had emitted a stronger solar wind that produced a protective effect against cosmic rays. In that early age, a moderate greenhouse effect comparable to today's would have been sufficient to explain a largely ice-free Earth. Evidence for a more active early Sun has been found in
meteorite A meteorite is a rock (geology), rock that originated in outer space and has fallen to the surface of a planet or Natural satellite, moon. When the original object enters the atmosphere, various factors such as friction, pressure, and chemical ...
s. The temperature minimum around 2.4 Ga goes along with a cosmic ray flux modulation by a variable star formation rate in the
Milky Way The Milky Way or Milky Way Galaxy is the galaxy that includes the Solar System, with the name describing the #Appearance, galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars in other arms of the galax ...
. The reduced solar impact later results in a stronger impact of cosmic ray flux, which is hypothesized to lead to a relationship with climatological variations.


Mass loss from Sun

It has been proposed several times that mass loss from the faint young Sun in the form of stronger solar winds could have compensated for the low temperatures from greenhouse gas forcing. In this framework, the early Sun underwent an extended period of higher solar wind output. Based on exoplanetary data, this caused a mass loss from the Sun of 5−6 percent over its lifetime, resulting in a more consistent level of solar luminosity (as the early Sun had more mass, resulting in more energy output than was predicted). In order to explain the warm conditions in the
Archean The Archean ( , also spelled Archaean or Archæan), in older sources sometimes called the Archaeozoic, is the second of the four geologic eons of Earth's history of Earth, history, preceded by the Hadean Eon and followed by the Proterozoic and t ...
eon, this mass loss must have occurred over an interval of about one billion years. Records of ion implantation from meteorites and lunar samples show that the elevated rate of solar wind flux only lasted for a period of 100 million years. Observations of the young Sun-like star π1 Ursae Majoris match this rate of decline in the stellar wind output, suggesting that a higher mass loss rate cannot by itself resolve the paradox.


Changes in clouds

If greenhouse gas concentrations did not compensate completely for the fainter Sun, the moderate temperature range may be explained by a lower surface
albedo Albedo ( ; ) is the fraction of sunlight that is Diffuse reflection, diffusely reflected by a body. It is measured on a scale from 0 (corresponding to a black body that absorbs all incident radiation) to 1 (corresponding to a body that reflects ...
. At the time, a smaller area of exposed continental land would have resulted in fewer cloud condensation nuclei both in the form of wind-blown dust and biogenic sources. A lower albedo allows a higher fraction of solar radiation to penetrate to the surface. Goldblatt and Zahnle (2011) investigated whether a change in cloud fraction could have been sufficiently warming and found that the net effect was equally as likely to have been negative as positive. At most the effect could have raised surface temperatures to just above freezing on average. Another proposed mechanism of cloud cover reduction relates a decrease in cosmic rays during this time to reduced cloud fraction. However, this mechanism does not work for several reasons, including the fact that ions do not limit cloud formation as much as cloud condensation nuclei, and cosmic rays have been found to have little impact on global mean temperature. Clouds continue to be the dominant source of uncertainty in 3-D global climate models, and a consensus has yet to be reached on how changes in cloud spatial patterns and cloud type may have affected Earth's climate during this time.


Local Hubble expansion

Although both simulations and direct measurements of effects of
Hubble's law Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther a galaxy is from the Earth, the faste ...
on gravitationally bound systems are returning inconclusive results as of 2022, it was noted that orbital expansion with a fraction of local Hubble expansion rate may explain the observed anomalies in orbital evolution, including a faint young Sun paradox.


Gaia hypothesis

The
Gaia hypothesis The Gaia hypothesis (), also known as the Gaia theory, Gaia paradigm, or the Gaia principle, proposes that living organisms interact with their Inorganic compound, inorganic surroundings on Earth to form a Synergy, synergistic and Homeostasis, s ...
holds that biological processes work to maintain a stable surface climate on Earth to maintain habitability through various negative feedback mechanisms. While organic processes, such as the organic carbon cycle, work to regulate dramatic climate changes, and that the surface of Earth has presumably remained habitable, this hypothesis has been criticized as intractable. Furthermore, life has existed on the surface of Earth through dramatic changes in climate, including
Snowball Earth The Snowball Earth is a historical geology, geohistorical hypothesis that proposes that during one or more of Earth's greenhouse and icehouse Earth, icehouse climates, the planet's planetary surface, surface became nearly entirely freezing, fr ...
episodes. There are also strong and weak versions of the Gaia hypothesis, which has caused some tension in this research area.


On other planets


Mars

Mars has its own version of the faint young Sun paradox. Martian terrains show clear signs of past liquid water on the surface, including outflow channels, gullies, modified craters, and valley networks. These geomorphic features suggest Mars had an ocean on its surface and river networks that resemble current Earth's during the late Noachian (4.1–3.7 Ga). It is unclear how Mars's orbital pattern, which places it even further from the Sun, and the faintness of the young Sun could have produced what is thought to have been a very warm and wet climate on Mars. Scientists debate over which geomorphological features can be attributed to shorelines or other water flow markers and which can be ascribed to other mechanisms. Nevertheless, the geologic evidence, including observations of widespread fluvial erosion in the southern highlands, are generally consistent with an early warm and semi-arid climate. Given the orbital and solar conditions of early Mars, a greenhouse effect would have been necessary to increase surface temperatures at least 65 K in order for these surface features to have been carved by flowing water. A much denser, CO2-dominated atmosphere has been proposed as a way to produce such a temperature increase. This would depend upon the carbon cycle and the rate of volcanism throughout the pre-Noachian and Noachian, which is not well known. Volatile outgassing is thought to have occurred during these periods. One way to ascertain whether Mars possessed a thick CO2-rich atmosphere is to examine carbonate deposits. A primary sink for carbon in Earth's atmosphere is the carbonate–silicate cycle. However it would have been difficult for CO2 to have accumulated in the Martian atmosphere in this way because the greenhouse effect would have been outstripped by CO2 condensation. A volcanically-outgassed CO2-H2 greenhouse is a plausible scenario suggested recently for early Mars. Intermittent bursts of methane may have been another possibility. Such greenhouse gas combinations appear necessary because carbon dioxide alone, even at pressures exceeding a few bar, cannot explain the temperatures required for the presence of surface liquid water on early Mars.


Venus

Venus's atmosphere is composed of 96% carbon dioxide. Billions of years ago, when the Sun was 25 to 30% dimmer, Venus's surface temperature could have been much cooler, and its climate could have resembled current Earth's, complete with a hydrological cycle—before it experienced a runaway greenhouse effect.


See also

* Cool early Earth *
Effective temperature The effective temperature of a body such as a star or planet is the temperature of a black body that would emit the same total amount of electromagnetic radiation. Effective temperature is often used as an estimate of a body's surface temperature ...
– of a planet, dependent on reflectivity of its surface and clouds. * Isua Greenstone Belt * *
Paleoclimatology Paleoclimatology ( British spelling, palaeoclimatology) is the scientific study of climates predating the invention of meteorological instruments, when no direct measurement data were available. As instrumental records only span a tiny part of ...


References


Further reading

* {{Portal bar, Physics, Astronomy, Stars, Spaceflight, Outer space, Solar System, Science Sun Climate history Paradoxes 1972 in science Unsolved problems in astronomy