HOME

TheInfoList



OR:

In mathematics, an automorphic function is a function on a space that is invariant under the action of some group, in other words a function on the
quotient space Quotient space may refer to a quotient set when the sets under consideration are considered as spaces. In particular: *Quotient space (topology), in case of topological spaces * Quotient space (linear algebra), in case of vector spaces *Quotient ...
. Often the space is a
complex manifold In differential geometry and complex geometry, a complex manifold is a manifold with an atlas of charts to the open unit disc in \mathbb^n, such that the transition maps are holomorphic. The term complex manifold is variously used to mean a ...
and the group is a discrete group.


Factor of automorphy

In mathematics, the notion of factor of automorphy arises for a group
acting Acting is an activity in which a story is told by means of its enactment by an actor or actress who adopts a character—in theatre, television, film, radio, or any other medium that makes use of the mimetic mode. Acting involves a bro ...
on a complex-analytic manifold. Suppose a group G acts on a complex-analytic manifold X. Then, G also acts on the space of
holomorphic function In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space . The existence of a complex de ...
s from X to the complex numbers. A function f is termed an ''
automorphic form In harmonic analysis and number theory, an automorphic form is a well-behaved function from a topological group ''G'' to the complex numbers (or complex vector space) which is invariant under the action of a discrete subgroup \Gamma \subset G of ...
'' if the following holds: : f(g.x) = j_g(x)f(x) where j_g(x) is an everywhere nonzero holomorphic function. Equivalently, an automorphic form is a function whose divisor is invariant under the action of G. The ''factor of automorphy'' for the automorphic form f is the function j. An ''automorphic function'' is an automorphic form for which j is the identity. Some facts about factors of automorphy: * Every factor of automorphy is a
cocycle In mathematics a cocycle is a closed cochain. Cocycles are used in algebraic topology to express obstructions (for example, to integrating a differential equation on a closed manifold). They are likewise used in group cohomology. In autonomous d ...
for the action of G on the multiplicative group of everywhere nonzero holomorphic functions. * The factor of automorphy is a coboundary if and only if it arises from an everywhere nonzero automorphic form. * For a given factor of automorphy, the space of automorphic forms is a vector space. * The pointwise product of two automorphic forms is an automorphic form corresponding to the product of the corresponding factors of automorphy. Relation between factors of automorphy and other notions: * Let \Gamma be a lattice in a Lie group G. Then, a factor of automorphy for \Gamma corresponds to a line bundle on the quotient group G/\Gamma. Further, the automorphic forms for a given factor of automorphy correspond to sections of the corresponding line bundle. The specific case of \Gamma a subgroup of ''SL''(2, R), acting on the
upper half-plane In mathematics, the upper half-plane, \,\mathcal\,, is the set of points in the Cartesian plane with > 0. Complex plane Mathematicians sometimes identify the Cartesian plane with the complex plane, and then the upper half-plane corresponds to ...
, is treated in the article on automorphic factors.


Examples

* Kleinian group * Elliptic modular function * Modular function *
Complex torus In mathematics, a complex torus is a particular kind of complex manifold ''M'' whose underlying smooth manifold is a torus in the usual sense (i.e. the cartesian product of some number ''N'' circles). Here ''N'' must be the even number 2''n'', w ...


References

* * * * *{{Citation , last1=Fricke , first1=Robert , last2=Klein , first2=Felix , title=Vorlesungen über die Theorie der automorphen Functionen. Zweiter Band: Die funktionentheoretischen Ausführungen und die Anwendungen. 1. Lieferung: Engere Theorie der automorphen Funktionen. , url=https://archive.org/details/vorlesungenber02fricuoft , publisher=Leipzig: B. G. Teubner. , language=German , isbn=978-1-4297-0552-3 , jfm=32.0430.01 , year=1912 Automorphic forms Discrete groups Types of functions Complex manifolds