FRAS1
   HOME

TheInfoList



OR:

Extracellular matrix protein FRAS1 is a
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
that in humans is encoded by the ''FRAS1'' (Fraser syndrome 1)
gene In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protei ...
. This gene encodes an
extracellular matrix In biology, the extracellular matrix (ECM), also called intercellular matrix (ICM), is a network consisting of extracellular macromolecules and minerals, such as collagen, enzymes, glycoproteins and hydroxyapatite that provide structural and bio ...
protein that appears to function in the regulation of epidermal-
basement membrane The basement membrane, also known as base membrane, is a thin, pliable sheet-like type of extracellular matrix that provides cell and tissue support and acts as a platform for complex signalling. The basement membrane sits between epithelial tis ...
adhesion and
organogenesis Organogenesis is the phase of embryonic development that starts at the end of gastrulation and continues until birth. During organogenesis, the three germ layers formed from gastrulation (the ectoderm, endoderm, and mesoderm) form the internal org ...
during development.


Metastatic prostate cancer

A single nucleotide switch ( polymorphism) in FRAS1 promoter region is associated with metastatic Prostate cancer. The promoter region is directly related to the NFkB pathway and has been shown to be associated with lethal prostate cancer. Fras1 related extracellular matrix (FREM1) directly relates to congenital diaphragmatic hernia in developing fetuses. Decreased expression of FREM1 may be linked with disruptions in the growth of diaphragm cells. Both FRAS1 and FREM1 are among the proteins that are primarily interacting during embryonic development. It is shown that a decrease in these two proteins lead to an increase of congenital diaphragmatic hernia in both humans and mice.


Clinical significance

Mutations in this gene have been observed to cause fraser syndrome.


See also

* Fraser syndrome


References


Further reading

* * * * * * * * * * {{biochem-stub Extracellular matrix proteins