In
feature-oriented software development, feature-oriented software development program cubes (FOSD program cubes) are n-dimensional arrays of functions (program transformations) that represent n-dimensional product lines. A ''program'' is a composition of features: a base program is augmented with increments in program functionality, called ''features'', to produce a complex program. A
software product line Software product lines (SPLs), or software product line development, refers to software engineering methods, tools and techniques for creating a collection of similar software systems from a shared set of software assets using a common means of pro ...
(SPL) is a family of related programs. A typical product line has F
0 as a base program, and F
1..F
n as features that could be added to F
0. Different compositions of features yield different programs.
Let + denote the feature composition operation. A program P in SPL might have the following expression:
P = F
8 + F
4 + F
2 + F
1 + F
0
That is, P extends program F
0 with features F
1, F
2, F
4, and F
8 in this order.
We can recast P in terms of a projection and contraction of a 1-dimensional array.
Let F
i =
0 .. Fn">0 .. Fndenote the array of features used by a product line. A projection of F
i eliminates
unneeded features, yielding a shorter array (call it) G
i. A contraction of G
i sums each G
i in a specific order, to yield a scalar expression. The expression for P becomes:
P =
F
i
where the index values accomplish projection and summation is array contraction. This idea
generalizes to n-dimensional arrays that model multi-dimensional product lines.
Multi-dimensional product lines
A ''multi-dimensional product line'' is described by multiple interacting sets of features.
As an elementary 2D example, it is easy to create a product line of calculators, where
variants offer different sets of operations. Another variation
might offer different presentation front ends to calculators, one with no GUI, another
with a Java GUI, a third with a web GUI. These variations interact:
each GUI representation references a specific calculator operation, so each GUI
feature cannot be designed independently of its
calculator feature. Such a design leads to a matrix: columns represent increments in
calculator functionality, and rows represent different presentation front-ends. Such a matrix M is shown to the right: columns allow one to pair
basic calculator functionality (base) with optional logarithmic/exponentiation (lx)
and trigonometric (td) features. Rows allow one to pair core functionality with no
front-end (core), with optional GUI (gui) and web-based (web) front-ends.
An element M
ij implements the interaction of column feature i and row feature j.
For example, the element labeled cb is a base program that implements the core functionality of a calculator. Element gb adds code that displays the core functionality as a GUI; element wb adds code that displays the core functionality via the web. Similarly, element ct adds trigonometric code to the core calculator functionality; elements gt and wt add code to display the trigonometric functionality as a GUI and web front-ends.
A calculator is uniquely specified by two sequences of features: one sequence defines the calculator functionality, the other the front-end.
For example, calculator C that offers both base and trig functionality in a web format
is defined by the expression:
C = M
cb + M
ct + M
wb + M
wt =
M
ij
: Note: Each dimension is a collection of base programs and features. Not all of their compositions are meaningful. A
feature model defines the legal combinations of features. Thus, each dimension would have its own feature model. It is possible that selected features along one dimension may preclude or require features along other dimensions. In any case, these feature models define the legal combinations of features in a multidimensional product line.
Cubes
In general, a ''cube'' is an n-dimensional array. The rank of a cube is its dimensionality.
A scalar is a cube of rank 0, a vector is a cube of rank 1, and a matrix is
rank 2. Following tensor notation: the number of indices a cube has designates
its rank. A scalar S is rank 0 (it has no indices), V
k is a vector (rank
1), M
ij is a matrix (rank 2), C
ijk is a cube (rank 3).
''Program Cubes'' are n-dimensional arrays of functions
(program transformations) that represent n-dimensional product lines.
The values along each axis
of a cube denote either a base program or a feature that could elaborate a base program.
The rank of a product line is the rank of its cube.
: Note: program cubes are inspired by
tensor
In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tenso ...
s and
data cubes in databases. The primary difference is that data cube elements are numerical values that are added during cube contraction; program cube elements are transformations that are composed. Both use
tensor
In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tenso ...
notations and terminology.
A program in an n-dimensional SPL is uniquely specified by n sequences of features S
1..S
n, one per dimension.
The ''design'' of a program is a scalar (expression) that is formed by (1) projecting the cube
of its unneeded elements, and (2) contracting the resultant kcube to a scalar:
P =
K
i1...in
Program ''generation'' is evaluating the scalar expression to produce program P.
An interesting property of cube design is that the order in which dimensions are contracted does not
matter—any permutation of dimensions during contraction results in a different
scalar expression (i.e. a different program design), but all expressions produce the
same value (program). For example, another expression (design) to produce calculator C contracts
dimensions in the opposite order from its original specification:
C = M
cb + M
wb + M
ct + M
wt
Or more generally:
P =
K
i1...in
: Note: Underlying cube designs is a
commutative diagram
350px, The commutative diagram used in the proof of the five lemma.
In mathematics, and especially in category theory, a commutative diagram is a diagram such that all directed paths in the diagram with the same start and endpoints lead to the s ...
, such that there are an exponential number of paths from the empty program 0 to program P. Each path denotes a particular contraction of a cube, and corresponds to a unique incremental design of P. Included among these paths are cube aggregations that contract cubes using different dimensional orders.
The significance of program cubes is that it provides a structured way in which to
express and build multi-dimensional models of SPLs. Further, it provides scalable
specifications. If each dimension has k values, an n-cube specification of a program
requires O(kn) terms, as opposed to O(k
n) cube elements that would otherwise
have to be identified and then composed. In general, cubes provide a compact way
to specify complex programs.
Applications
The ''expression problem'' (''EP''; a.k.a. the ''extensibility problem'') is a fundamental problem in programming languages aimed at type systems that can add new classes and methods to a program in a type-safe manner.
[
][
][
][
{{cite web
, title=Synthesizing Object-Oriented and Functional Design to Promote Re-Use
, url=http://citeseer.ist.psu.edu/krishnamurthi98synthesizing.html
]
It is also a fundamental problem in multi-dimensional SPL design. The expression problem is an example of an SPL of rank 2. The following applications either explain/illustrate the expression problem or show how it scales to product lines of large programs. EP is really a SPL of ~30 line programs; the applications below show how these ideas scale to programs of >30K lines (a 10
3 increase in size).
*
tp://ftp.cs.utexas.edu/pub/predator/ECOOP2005.pdf Expression ProblemIllustration of Small Expression Problem*
tp://ftp.cs.utexas.edu/pub/predator/Origami.pdf Extensible IDEs*
tp://ftp.cs.utexas.edu/pub/predator/OrigamiMDSC.pdf Multi-Dimensional Separation of Concerns*
tp://ftp.cs.utexas.edu/pub/predator/TSE-AHEAD.pdf Calculator Product Line
Also,
FOSD metamodels Feature-oriented software development (FOSD) is a general paradigm for software generation, where a model of a product line is a tuple of 0-ary and 1-ary functions (program transformations). This page discusses a more abstract concept of models of p ...
can be viewed as special cases of program cubes.
References
Feature-oriented programming