Explorer 35, (IMP-E, AIMP-2, Anchored IMP-2, Interplanetary Monitoring Platform-E), was a spin-stabilized spacecraft built by
NASA
The National Aeronautics and Space Administration (NASA ) is an independent agencies of the United States government, independent agency of the federal government of the United States, US federal government responsible for the United States ...
as part of the
Explorer program. It was designed for the study of the interplanetary
plasma,
magnetic field
A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
, energetic particles, and solar
X-ray
An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays. Roughly, X-rays have a wavelength ran ...
s, from lunar orbit.
[ ]
Spacecraft
Explorer 35 was similar to the earlier
Explorer 33
Explorer 33, also known as IMP-D and AIMP-1, is a spacecraft in the Explorer program launched by NASA on 1 July 1966 on a mission of scientific exploration. It was the fourth satellite launched as part of the Interplanetary Monitoring Platform ...
. The spacecraft mass was . The main body of the spacecraft was an octagonal prism, across and high. Four arrays containing 6144 n/p solar cells, providing an average of 70
watt
The watt (symbol: W) is the unit of Power (physics), power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m2⋅s−3. It is used to quantification (science), quantify the rate of Work ...
s power, extended from the main bus, along with two magnetometer booms. Four whip antennas are mounted on top of the spacecraft. A retrorocket was mounted on top of the bus. Power was stored in
silver–cadmium batteries (Ag-Cd). Communication (PFM telemetry) was via a 7-watts transmitter and a digital data processor. The science payload had a mass of and included two 3-axis magnetometers, low energy protons and alpha energy analyzer, low energy protons and electrons detector, energetic particle detector, plasma probe, a micrometeorite detector, a solar cell damage experiment, and gravity field and bistatic radar experiments.
Mission
Part of the
Interplanetary Monitoring Platform program, it was of a design similar to
Explorer 33
Explorer 33, also known as IMP-D and AIMP-1, is a spacecraft in the Explorer program launched by NASA on 1 July 1966 on a mission of scientific exploration. It was the fourth satellite launched as part of the Interplanetary Monitoring Platform ...
(IMP-D / AIMP-1), which launched in 1966. However,
Explorer 34 (IMP-F), with a different design and mission objectives, was launched about two months prior to IMP-E.
Explorer 41 (IMP-G) was the next IMP spacecraft to fly after Explorer 35, in 1969. It was also designed to study the Moon's
gravity field
In physics, a gravitational field or gravitational acceleration field is a vector field used to explain the influences that a body extends into the space around itself. A gravitational field is used to explain gravitational phenomena, such as ...
,
ionosphere
The ionosphere () is the ionized part of the upper atmosphere of Earth, from about to above sea level, a region that includes the thermosphere and parts of the mesosphere and exosphere. The ionosphere is ionized by solar radiation. It plays ...
and
micrometeorite and
dust distribution. The spin axis direction was nearly perpendicular to the
ecliptic
The ecliptic or ecliptic plane is the orbital plane of Earth's orbit, Earth around the Sun. It was a central concept in a number of ancient sciences, providing the framework for key measurements in astronomy, astrology and calendar-making.
Fr ...
plane, and the spin rate was 25.6
rpm.
Launch
Explorer 35 was launched on 19 July 1967 from
the Eastern Test Range of Cape Kennedy on a
Thor-Delta E1 (Thrust Augmented Delta - TAD). It went on a direct ascent trajectory, reaching the Moon on 22 July 1967. It entered an initial altitude elliptical lunar orbit at 147° inclination after a 23-seconds
retrorocket burn. The main engine separated 2 hours later. Explorer 35 operated normally in lunar orbit for 6 years until it was shut off on 24 June 1973.
Experiments
AMES Magnetic Fields
The Ames
magnetometer
A magnetometer is a device that measures magnetic field or magnetic dipole moment. Different types of magnetometers measure the direction, strength, or relative change of a magnetic field at a particular location. A compass is one such device, ...
experiment consisted of a boom-mounted triaxial fluxgate magnetometer and an electronics package. The sensors were orthogonally mounted, with one sensor oriented along the spin axis of the spacecraft. A motor interchanged a sensor in the spin plane with the sensor along the spin axis every 24 hours, allowing inflight calibration. The instrument package included a circuit for demodulating the outputs from the sensors in the spin plane. The noise threshold was about 0.2
nT. The instrument had three ranges covering ± 20, 60, and 200 nT full scale for each vector component. The digitization accuracy for each range was 1% of the entire range covered. The magnetic field vector was measured instantaneously, and the instrument range was changed after each measurement. A period of 2.05-seconds elapsed between adjacent measurements and a period of 6.14-seconds elapsed between measurements using the same range. The instrument performance was normal.
[ ]
Explorer 35 provided important reference data for magnetic field measurements taken on the
Moon
The Moon is Earth's only natural satellite. It Orbit of the Moon, orbits around Earth at Lunar distance, an average distance of (; about 30 times Earth diameter, Earth's diameter). The Moon rotation, rotates, with a rotation period (lunar ...
during the
Apollo program
The Apollo program, also known as Project Apollo, was the United States human spaceflight program led by NASA, which Moon landing, landed the first humans on the Moon in 1969. Apollo followed Project Mercury that put the first Americans in sp ...
.
[''Apollo 16 Preliminary Science Report'' (NASA SP-315) 1972 Chapter 12 Lunar Portable Magnetometer Experiment, NASA Scientific and Technical Information Office]
Bistatic Radar Observations of the Lunar Surface
The purpose of this experiment was to study the
electromagnetic
In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interacti ...
reflective properties of the
lunar surface. The 136.10-Hz () telemetry transmissions from the spacecraft were scattered from the lunar surface and then recorded by use of the
Stanford dish antenna. The reflected signal intensity depended upon the lunar reflectivity, the spacecraft altitude above the lunar surface, and the mean curvature of the Moon. The returned signal bandwidth was proportional to RMS lunar surface slopes. Occultation phenomena permitted a determination of the scattering properties of the
lunar limb. The
dielectric
In electromagnetism, a dielectric (or dielectric medium) is an Insulator (electricity), electrical insulator that can be Polarisability, polarised by an applied electric field. When a dielectric material is placed in an electric field, electric ...
constant of the lunar subsurface in the scattering region below a depth of about was then determined from a profile of reflectivity values versus the angle of incidence on the Moon. The mean lunar slope over each area from which signals were reflected has also been inferred. The observations were located within about 10° of the lunar equator. Experiment operation was normal as of March 1971.
[ ]
Electron and Proton Detectors
Three EON type 6213
Geiger–Müller tube
The Geiger–Müller tube or G–M tube is the sensing element of the Geiger counter instrument used for the detection of ionizing radiation. It is named after Hans Geiger, who invented the principle in 1908, and Walther Müller, who collaborate ...
s (GM1, GM2, and GM3) and a
silicon
Silicon is a chemical element; it has symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic lustre, and is a tetravalent metalloid (sometimes considered a non-metal) and semiconductor. It is a membe ...
solid-state detector (SSD) provided measurements of solar X-rays (GM1 only, between 2 and 12 A) and
charged particle
In physics, a charged particle is a particle with an electric charge. For example, some elementary particles, like the electron or quarks are charged. Some composite particles like protons are charged particles. An ion, such as a molecule or atom ...
s in the vicinity of the Moon. GM1 and GM3 measured
electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s of energies greater than 48 to 50
keV and
proton
A proton is a stable subatomic particle, symbol , Hydron (chemistry), H+, or 1H+ with a positive electric charge of +1 ''e'' (elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an e ...
s of energy greater than 740 to 820 keV, while GM2 was shielded by a cap with approximately 1 gram per cm
2 (limiting its response to protons of energies greater than about 55 MeV). The SSD output was discriminated at four thresholds: (1) PN1, which detected protons between 0.32 and 6.3 MeV, (2) PN2, which detected protons between 0.48 and 3.0 MeV, (3) PN4, which detected
alpha particle
Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay but may also be produce ...
s between 2 and 10.2 MeV, and (4) PN3, which was sensitive to particles of Z greater than 3, including
carbon-12
Carbon-12 (12C) is the most abundant of the two stable isotopes of carbon ( carbon-13 being the other), amounting to 98.93% of element carbon on Earth; its abundance is due to the triple-alpha process by which it is created in stars. Carbon-1 ...
between 0.58 and 9.5 MeV per
nucleon
In physics and chemistry, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number.
Until the 1960s, nucleons were thought to be ele ...
,
nitrogen-14
Natural nitrogen (7N) consists of two stable isotopes: the vast majority (99.6%) of naturally occurring nitrogen is nitrogen-14, with the remainder being nitrogen-15. Thirteen radioisotopes are also known, with atomic masses ranging from 9 to 23, ...
between 0.514 and 13.9 MeV per nucleon, and
oxygen-16 between 0.466 and 18.8 MeV per nucleon. GM1 and SSD were oriented perpendicular to the spacecraft spin axis, GM2 was oriented parallel to the spin axis, and GM3 was oriented antiparallel to the spin axis. Data from GM1, PN1, and PN4 were divided into data from quadrants oriented with respect to the
Sun
The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light a ...
(sectors I, II, III, and IV were centered 180°, 270°, 0°, and 90° away from the Sun, respectively). Data were read out every 82- or 164-seconds, and the experiment performance was normal.
[ ]
Energetic Particle
This experiment consisted of a Neher-type
ionization chamber
The ionization chamber is the simplest type of gaseous ionisation detector, and is widely used for the detection and measurement of many types of ionizing radiation, including X-rays, gamma rays, alpha particles and beta particles. Conventionall ...
and two Lionel type 205 HT
Geiger–Müller tube
The Geiger–Müller tube or G–M tube is the sensing element of the Geiger counter instrument used for the detection of ionizing radiation. It is named after Hans Geiger, who invented the principle in 1908, and Walther Müller, who collaborate ...
s (GM). The ion chamber responded omnidirectionally to electrons above 0.7 MeV and protons above 12 MeV. Both GM tubes were mounted parallel to the spacecraft spin axis. GM tube 1 detected electrons above 45 keV that were scattered off a
gold foil. The acceptance cone for these electrons had a 70« full-angle and an axis of symmetry that was 20« off the spacecraft spin axis. GM tube 2 responded to electrons and protons above 22 and 300 keV, respectively, in an acceptance cone of 70° full-angle centered at the spacecraft spin axis. Both GM tubes responded omnidirectionally to electrons and protons of energies above 2.5 and 50 MeV, respectively. Pulses from the ion chamber and counts from each GM tube were accumulated for 39.72-seconds and read out every 40.96-seconds. In addition, the time between the first ion chamber pulses in an accumulation period was also telemetered. This experiment performed well initially.
[ ]
GSFC Magnetometer
The experiment consisted of a boom-mounted
triaxial fluxgate magnetometer. Each sensor had dual ranges of minus to plus 24 nT and 64 nT, with digitization resolutions of ± 0.094 nT and 0.250 nT, respectively. Zero level drift was checked by periodic reorientation of the sensors until 20 May 1969, when the flipper mechanism failed. Past this point, data analysis was more difficult as the zero level drift of the sensor parallel to the spacecraft spin axis was not readily determined. Spacecraft interference was less than 0.125 nT. One vector measurement was obtained each 5.12-seconds. The bandpass of the magnetometer was 0 to 5 Hz, with a 20-
dB per decade decrease for higher frequencies. Except for the flipper failure, the experiment functioned normally from launch to spacecraft turnoff on 24 June 1973.
[ ]
Low-Energy Integral Spectrum Measurement Experiment
A planar multi-grid sensor programmed as a retarding potential analyzer was used to observe the intensity of the electron and
ion components of the low energy plasma near the Moon. Integral spectra were obtained for both ions and electrons in the energy range from 1 to 500 eV. A complete spectrum was obtained every 80-seconds.
[ ]
Micrometeorite Flux
This experiment was designed to measure the ionization, momentum, speed, and direction of
micrometeorites, using thin film charged detectors, induction devices, and microphones.
[ ]
Plasma Probe
A multigrid, split-collector Faraday cup mounted on the equator of the spacecraft was used to study the directional intensity of solar wind positive ions and electrons with particular emphasis on the interaction of the solar wind with the moon. Twenty-seven integral current samples (requiring about 4.3 s) were taken in an energy-per-charge window from 80 to 2850 eV. Then the current was sampled in eight differential energy-per-charge windows between 50 and 5400 eV at the azimuth where the peak current appeared in the previous series of integral measurements. These measurements (integral and differential) took about 25 s. Both the sum and difference of collector currents were obtained for positive ions. Only the sum was obtained for electrons. A complete set of measurements (two collector plate sums and one difference for protons, and one collector plate sum for electrons) required 328 s. The experiment worked well from launch until its failure in July 1968.
[ ]
Selenodetic Studies
Range and range-rate tracking data of the Explorer 35 satellite as it orbited the Moon were used to obtain selenodetic gravity field information based on the perturbations to the satellite orbit imparted by the lunar mass distribution.
[ ]
End of Mission
After successful operation for 6 years, the spacecraft was turned off on 24 June 1973. The orbit would have naturally decayed after this point, resulting in an impact on the Moon at an unknown time and location. Explorer 35 (or Explorer XXXV) was also known as the Anchored Interplanetary Monitoring Platform-2 (AIMP-2 or IMP-E).
See also
*
Explorer 33
Explorer 33, also known as IMP-D and AIMP-1, is a spacecraft in the Explorer program launched by NASA on 1 July 1966 on a mission of scientific exploration. It was the fourth satellite launched as part of the Interplanetary Monitoring Platform ...
(AIMP-1)
*
Explorer program
References
{{Moon spacecraft
1967 in spaceflight
Missions to the Moon
Explorers Program
Spacecraft launched in 1967
Interplanetary Monitoring Platform
NASA space probes