Exosomes, ranging in size from 30 to 150 nanometers, are membrane-bound
extracellular vesicles (EVs) that are produced in the
endosomal compartment of most
eukaryotic cells.
In
multicellular organism
A multicellular organism is an organism that consists of more than one cell (biology), cell, unlike unicellular organisms. All species of animals, Embryophyte, land plants and most fungi are multicellular, as are many algae, whereas a few organism ...
s, exosomes and other EVs are found in biological fluids including
saliva
Saliva (commonly referred as spit or drool) is an extracellular fluid produced and secreted by salivary glands in the mouth. In humans, saliva is around 99% water, plus electrolytes, mucus, white blood cells, epithelial cells (from which ...
,
blood
Blood is a body fluid in the circulatory system of humans and other vertebrates that delivers necessary substances such as nutrients and oxygen to the cells, and transports metabolic waste products away from those same cells.
Blood is com ...
,
urine
Urine is a liquid by-product of metabolism in humans and many other animals. In placental mammals, urine flows from the Kidney (vertebrates), kidneys through the ureters to the urinary bladder and exits the urethra through the penile meatus (mal ...
and
cerebrospinal fluid
Cerebrospinal fluid (CSF) is a clear, colorless Extracellular fluid#Transcellular fluid, transcellular body fluid found within the meninges, meningeal tissue that surrounds the vertebrate brain and spinal cord, and in the ventricular system, ven ...
.
EVs have specialized functions in physiological processes, from
coagulation
Coagulation, also known as clotting, is the process by which blood changes from a liquid to a gel, forming a thrombus, blood clot. It results in hemostasis, the cessation of blood loss from a damaged vessel, followed by repair. The process of co ...
and waste management to intercellular communication.
Exosomes are formed through the inward budding of a late
endosome
Endosomes are a collection of intracellular sorting organelles in eukaryotic cells. They are parts of the endocytic membrane transport pathway originating from the trans Golgi network. Molecules or ligands internalized from the plasma membra ...
, also known as a
multivesicular body (MVB).
The
intraluminal vesicles (ILVs) of the multivesicular body (MVB) bud inward into the endosomal
lumen. If the MVB fuses with the cell surface (the
plasma membrane
The cell membrane (also known as the plasma membrane or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of a cell from the outside environment (the extr ...
), these ILVs are released as exosomes.
Exosomes were also identified within the tissue
matrix
Matrix (: matrices or matrixes) or MATRIX may refer to:
Science and mathematics
* Matrix (mathematics), a rectangular array of numbers, symbols or expressions
* Matrix (logic), part of a formula in prenex normal form
* Matrix (biology), the m ...
, coined Matrix-Bound Nanovesicles (MBV). They are also released ''in vitro'' by
cultured cells into their
growth medium
A growth medium or culture medium is a solid, liquid, or semi-solid designed to support the growth of a population of microorganisms or cells via the process of cell proliferation or small plants like the moss ''Physcomitrella patens''. Differe ...
.
Enriched with a diverse array of biological elements from their source cells, exosomes contain
protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
s (such as adhesion molecules,
cytoskeleton
The cytoskeleton is a complex, dynamic network of interlinking protein filaments present in the cytoplasm of all cells, including those of bacteria and archaea. In eukaryotes, it extends from the cell nucleus to the cell membrane and is compos ...
s,
cytokine
Cytokines () are a broad and loose category of small proteins (~5–25 kDa) important in cell signaling.
Cytokines are produced by a broad range of cells, including immune cells like macrophages, B cell, B lymphocytes, T cell, T lymphocytes ...
s, ribosomal proteins, growth factors, and metabolic enzymes),
lipid
Lipids are a broad group of organic compounds which include fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), monoglycerides, diglycerides, phospholipids, and others. The functions of lipids include storing ...
s (including cholesterol, lipid rafts, and ceramides), and
nucleic acid
Nucleic acids are large biomolecules that are crucial in all cells and viruses. They are composed of nucleotides, which are the monomer components: a pentose, 5-carbon sugar, a phosphate group and a nitrogenous base. The two main classes of nuclei ...
s (such as
DNA
Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
,
mRNA
In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of Protein biosynthesis, synthesizing a protein.
mRNA is ...
, and
miRNA
Micro ribonucleic acid (microRNA, miRNA, μRNA) are small, single-stranded, non-coding RNA molecules containing 21–23 nucleotides. Found in plants, animals, and even some viruses, miRNAs are involved in RNA silencing and post-transcri ...
).
Since the size of exosomes is limited by that of the parent MVB, exosomes are generally thought to be smaller than most other EVs, from about 30 to 150
nanometre
330px, Different lengths as in respect to the Molecule">molecular scale.
The nanometre (international spelling as used by the International Bureau of Weights and Measures; SI symbol: nm), or nanometer (American spelling), is a unit of length ...
s (nm) in diameter: around the same size as many
lipoprotein
A lipoprotein is a biochemical assembly whose primary function is to transport hydrophobic lipid (also known as fat) molecules in water, as in blood plasma or other extracellular fluids. They consist of a triglyceride and cholesterol center, sur ...
s but much smaller than cells.
Compared with EVs in general, it is unclear whether exosomes have unique characteristics or functions or can be separated or distinguished effectively from other EVs.
EVs in circulation carry genetic material and proteins from their cell of origin, proteo-transcriptomic signatures that act as biomarkers.
In the case of cancer cells, exosomes may show differences in size, shape, morphology, and canonical markers from their donor cells. They may encapsulate relevant information that can be used for disease detection.
Consequently, there is a growing interest in clinical applications of EVs as biomarkers and therapies alike,
prompting establishment of an
International Society for Extracellular Vesicles (ISEV) and a scientific journal devoted to EVs, the ''
Journal of Extracellular Vesicles''.
Background
Exosomes were first discovered in the maturing mammalian
reticulocyte (immature red blood cell) by Stahl and group in 1983 and Johnstone and group in 1983 further termed 'exosomes' by Johnstone and group in 1987.
Exosomes were shown to participate in selective removal of many plasma membrane proteins as the reticulocyte becomes a mature red blood cell (
erythrocyte
Red blood cells (RBCs), referred to as erythrocytes (, with -''cyte'' translated as 'cell' in modern usage) in academia and medical publishing, also known as red cells, erythroid cells, and rarely haematids, are the most common type of blood ce ...
). In the reticulocyte, as in most mammalian cells, portions of the plasma membrane are regularly internalized as endosomes, with 50 to 180% of the plasma membrane being recycled every hour. In turn, parts of the membranes of some endosomes are subsequently internalized as smaller vesicles. Such endosomes are called
multivesicular bodies because of their appearance, with many small vesicles, (ILVs or "intralumenal endosomal vesicles"), inside the larger body. The ILVs become exosomes if the MVB merges with the cell membrane, releasing the internal vesicles into the extracellular space.
Exosomes contain various molecular constituents of their cell of origin, including proteins and RNA. Although the exosomal protein composition varies with the cell and tissue of origin, most exosomes contain an evolutionarily-conserved common set of protein molecules. The protein content of a single exosome, given certain assumptions of protein size and configuration, and packing parameters, can be about 20,000 molecules. The cargo of
mRNA
In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of Protein biosynthesis, synthesizing a protein.
mRNA is ...
and
miRNA
Micro ribonucleic acid (microRNA, miRNA, μRNA) are small, single-stranded, non-coding RNA molecules containing 21–23 nucleotides. Found in plants, animals, and even some viruses, miRNAs are involved in RNA silencing and post-transcri ...
in exosomes was first discovered at the University of Gothenburg in Sweden.
The content of exosomes changes depending on the cells of origin, and they thereby reflect their originating cells. Analysis of the dynamic variation of exosomes may provide a valuable means of monitoring diseases. In that study, the differences in cellular and exosomal
mRNA
In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of Protein biosynthesis, synthesizing a protein.
mRNA is ...
and
miRNA
Micro ribonucleic acid (microRNA, miRNA, μRNA) are small, single-stranded, non-coding RNA molecules containing 21–23 nucleotides. Found in plants, animals, and even some viruses, miRNAs are involved in RNA silencing and post-transcri ...
content was described, as well as the functionality of the exosomal
mRNA
In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of Protein biosynthesis, synthesizing a protein.
mRNA is ...
cargo. Exosomes have also been shown to carry double-stranded DNA.
Exosomes can transfer molecules from one cell to another via
membrane vesicle trafficking, thereby influencing the
immune system
The immune system is a network of biological systems that protects an organism from diseases. It detects and responds to a wide variety of pathogens, from viruses to bacteria, as well as Tumor immunology, cancer cells, Parasitic worm, parasitic ...
, such as
dendritic cells
A dendritic cell (DC) is an antigen-presenting cell (also known as an ''accessory cell'') of the mammalian immune system. A DC's main function is to process antigen material and present it on the cell surface to the T cells of the immune system ...
and
B cells
B cells, also known as B lymphocytes, are a type of the lymphocyte subtype. They function in the humoral immunity component of the adaptive immune system. B cells produce antibody molecules which may be either secreted or inserted into the plasm ...
, and may play a functional role in mediating
adaptive immune responses to
pathogens
In biology, a pathogen (, "suffering", "passion" and , "producer of"), in the oldest and broadest sense, is any organism or agent that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a germ.
The term ...
and
tumor
A neoplasm () is a type of abnormal and excessive growth of tissue. The process that occurs to form or produce a neoplasm is called neoplasia. The growth of a neoplasm is uncoordinated with that of the normal surrounding tissue, and persists ...
s.
Therefore, scientists who are actively researching the role that exosomes may play in cell-to-cell signaling, often hypothesize that delivery of their cargo RNA molecules can explain biological effects. For example,
mRNA
In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of Protein biosynthesis, synthesizing a protein.
mRNA is ...
in exosomes has been suggested to affect protein production in the recipient cell.
However, another study has suggested that miRNAs in exosomes secreted by mesenchymal stem cells (MSC) are predominantly pre- and not mature miRNAs. Because the authors of this study did not find
RNA-induced silencing complex
The RNA-induced silencing complex, or RISC, is a multiprotein complex, specifically a ribonucleoprotein, which functions in gene silencing via a variety of pathways at the transcriptional and translational levels. Using single-stranded RNA (ssRNA) ...
-associated proteins in these exosomes, they suggested that only the pre-miRNAs, but not the mature miRNAs in MSC exosomes, have the potential to be biologically active in the recipient cells. Multiple mechanisms have been reported to be involved in loading miRNAs into exosomes, including specific motifs in the miRNA sequences, interactions with lncRNAs localized to the exosomes, interactions with RBPs, and post-translational modifications of Ago.
Conversely, exosome production and content may be influenced by molecular signals received by the cell of origin. As evidence for this hypothesis, tumor cells exposed to hypoxia secrete exosomes with enhanced angiogenic and metastatic potential, suggesting that tumor cells adapt to a hypoxic microenvironment by secreting exosomes to stimulate angiogenesis or facilitate metastasis to more favorable environment.
Critique of Extracellular Vesicle-Associated RNA Function
While the hypothesis that exosomal RNA can mediate biological effects in recipient cells is compelling, definitive, rigorous evidence demonstrating functional extracellular RNA (exRNA) transfer in mammals remains limited. Although functional nucleic acid exchange is well-documented in plants and nematodes, the mammalian context presents unique experimental challenges. The mere presence of RNAs in extracellular vesicles does not necessarily imply biological function, as RNA degradation, passive release, and contamination from cellular debris can confound interpretations.
Terminology
Evolving consensus in the field is that the term "exosome" should be applied strictly to an EV of endosomal origin. Since it can be difficult to prove such an origin after an EV has left the cell, variations on the term "extracellular vesicle" are often appropriate instead.
Research
Exosomes from
red blood cell
Red blood cells (RBCs), referred to as erythrocytes (, with -''cyte'' translated as 'cell' in modern usage) in academia and medical publishing, also known as red cells, erythroid cells, and rarely haematids, are the most common type of blood cel ...
s contain the
transferrin receptor that is absent in mature erythrocytes.
Dendritic cell
A dendritic cell (DC) is an antigen-presenting cell (also known as an ''accessory cell'') of the mammalian immune system. A DC's main function is to process antigen material and present it on the cell surface to the T cells of the immune system ...
-derived exosomes express
MHC I,
MHC II, and costimulatory molecules and have been proven to be able to induce and enhance antigen-specific
T cell
T cells (also known as T lymphocytes) are an important part of the immune system and play a central role in the adaptive immune response. T cells can be distinguished from other lymphocytes by the presence of a T-cell receptor (TCR) on their cell ...
responses ''in vivo''. In addition, the first exosome-based
cancer
Cancer is a group of diseases involving Cell growth#Disorders, abnormal cell growth with the potential to Invasion (cancer), invade or Metastasis, spread to other parts of the body. These contrast with benign tumors, which do not spread. Po ...
vaccination
Vaccination is the administration of a vaccine to help the immune system develop immunity from a disease. Vaccines contain a microorganism or virus in a weakened, live or killed state, or proteins or toxins from the organism. In stimulating ...
platforms are being explored in early
clinical trials
Clinical trials are prospective biomedical or behavioral research studies on human subject research, human participants designed to answer specific questions about biomedical or behavioral interventions, including new treatments (such as novel v ...
. Exosomes can also be released into urine by the kidneys, and their detection might serve as a diagnostic tool.
Urinary exosomes may be useful as treatment response markers in prostate cancer. Exosomes secreted from tumour cells can deliver signals to surrounding cells and have been shown to regulate myofibroblast differentiation. In melanoma, tumor-derived vesicles can enter lymphatics and interact with subcapsular sinus macrophages and B cells in lymph nodes.
A recent investigation showed that exosome release positively correlates with the invasiveness of
ovarian cancer
Ovarian cancer is a cancerous tumor of an ovary. It may originate from the ovary itself or more commonly from communicating nearby structures such as fallopian tubes or the inner lining of the abdomen. The ovary is made up of three different ...
.
Exosomes released from tumors into the blood may also have diagnostic potential. Exosomes are remarkably stable in bodily fluids strengthening their utility as reservoirs for disease biomarkers. Patient blood samples stored in biorepositories can be used for biomarker analysis as colorectal cancer cell-derived exosomes spiked into blood plasma could be recovered after 90 days of storage at various temperatures.
In malignancies such as cancer, the regulatory circuit that guards exosome homeostasis is co-opted to promote cancer cell survival and metastasis.
In breast cancers, neratinib, a novel pan-ERBB inhibitor, is able to downmodulate the amount of HER2 released by exosomes, thus potentially reducing tumor dissemination.
Urinary exosomes have also proven to be useful in the detection of many pathologies, such as genitourinary cancers and mineralocorticoid hypertension, through their protein and miRNA cargo."
With neurodegenerative disorders, exosomes appear to play a role in the spread of
alpha-synuclein
Alpha-synuclein (aSyn) is a protein that in humans is encoded by the ''SNCA'' gene. It is a neuronal protein involved in the regulation of synaptic vesicle trafficking and the release of neurotransmitters.
Alpha-synuclein is abundant in the brai ...
, and are being actively investigated as a tool to both monitor disease progression as well as a potential vehicle for delivery of drug and stem cell based therapy.
An online open access database containing genomic information for exosome content has been developed to catalyze research development within the field.
Exosomes and intercellular communication
Scientists are actively researching the role that exosomes may play in cell-to-cell signaling, hypothesizing that because exosomes can merge with and release their contents into cells that are distant from their cell of origin (see
membrane vesicle trafficking), they may influence processes in the recipient cell. For example, RNA that is shuttled from one cell to another, known as "exosomal shuttle RNA," could potentially affect protein production in the recipient cell.
The role played by exosomes in cell-cell or interorgan communication and metabolic regulation was reviewed by Samuelson and
Vidal-Puig in 2018. By transferring molecules from one cell to another, exosomes from certain cells of the
immune system
The immune system is a network of biological systems that protects an organism from diseases. It detects and responds to a wide variety of pathogens, from viruses to bacteria, as well as Tumor immunology, cancer cells, Parasitic worm, parasitic ...
, such as dendritic cells and B cells, may play a functional role in mediating
adaptive immune responses to
pathogens
In biology, a pathogen (, "suffering", "passion" and , "producer of"), in the oldest and broadest sense, is any organism or agent that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a germ.
The term ...
and tumors.
Exosomal export of miRNA molecules is also linked to the arrest of inter cellular miRNA levels and affect their functionality by arresting them on heavy polysomes.
Conversely, exosome production and content may be influenced by molecular signals received by the cell of origin. As evidence for this hypothesis, tumor cells exposed to hypoxia secrete exosomes with enhanced angiogenic and metastatic potential, suggesting that tumor cells adapt to a hypoxic microenvironment by secreting exosomes to stimulate angiogenesis or facilitate metastasis to more favorable environment.
It has recently been shown that exosomal protein content may change during the progression of chronic lymphocytic leukemia.
A study hypothesized that intercellular communication of tumor exosomes could mediate further regions of metastasis for cancer. Hypothetically, exosomes can plant tumor information, such as tainted RNA, into new cells to prepare for cancer to travel to that organ for metastasis. The study found that tumor exosomal communication has the ability to mediate metastasis to different organs. Furthermore, even when tumor cells have a disadvantage for replicating, the information planted at these new regions, organs, can aid in the expansion of organ specific metastasis.
Exosomes carry cargo, which can augment innate immune responses. For example, exosomes derived from ''Salmonella enterica''-infected macrophages but not exosomes from uninfected cells stimulate naive macrophages and dendritic cells to secrete pro-inflammatory cytokines such as TNF-α, RANTES, IL-1ra, MIP-2, CXCL1, MCP-1, sICAM-1, GM-CSF, and G-CSF. Proinflammatory effects of exosomes are partially attributed to lipopolysaccharide, which is encapsulated within exosomes.
Exosomes also mediate the cross talk between the embryo and maternal compartment during implantation.They help to exchange ubiquitous protein, glycoproteins, DNA and mRNA.
Exosome biogenesis, secretion, and uptake
Exosomes biogenesis

Exosome formation starts with the invagination of the multi-vesicular bodies (MVBs) or late endosomes to generate intraluminal vesicles (ILVs).
There are various proposed mechanisms for formation of MVBs, vesicle budding, and sorting. The most studied and well known is the
endosomal sorting complex required for transport (ESCRT) dependent pathway. ESCRT machinery mediates the ubiquitinated pathway consisting of protein complexes; ESCRT-0, -I, -II, -III, and associated ATPase Vps4. ESCRT 0 recognizes and retains ubiquitinated proteins marked for packaging in the late endosomal membrane. ESCRT I/II recognizes the ESCRT 0 and starts creating involution of the membrane into the MVB. ESCRTIII forms a spiral-shaped structure constricting the neck. ATPase VPS4 protein drives the membrane scission. Syndecan-syntenin-ALIX exosome biogenesis pathway are one of the ESCRT-independent or non-canonical pathways for exosome biogenesis.
Exosome secretion
The MVBs once formed are trafficked to the internal side of the plasma membrane. These MVBs are transported to the plasma membrane leading to fusion.
Many studies have shown that MVBs having higher cholesterol content fuse with the plasma membrane thus releasing exosomes. The Rab proteins especially Rab 7 attached to the MVB recognizes its effector receptor. The SNARE complex (soluble N- ethylmaleimide- sensitive fusion attachment protein receptor) from the MVB and the plasma membrane interacts and mediates fusion.
Exosome uptake
Specific targeting by exosomes is an active area of research. The exact mechanisms of exosome targeting is limited to a few general mechanisms like docking of the exosomes with specific proteins, sugars, and lipid, or micropinocytosis. The internalized exosomes are targeted to the endosomes which release their content in the recipient cell.
Sorting and packaging of cargoes in exosomes
Exosomes contain different cargoes; proteins, lipids, and nucleic acids. These cargoes are specifically sorted and packaged into exosomes. The contents packaged into exosomes are cell type specific and also influenced by cellular conditions.
Exosomal microRNAs (exomiRs) and proteins are sorted and packaged in exosomes. Villarroya-Beltri and colleagues identified a conserved GGAG specific motif, EXOmotif, in the miRNA packaged in the exosomes which was absent in the cytosolic miRNA (CLmiRNA), which binds to sumoylated heterogeneous nuclear riboprotein (hnRNP) A2B1 for exosome specific miRNA packaging Proteins are packaged in ESCRT, tertraspanins, lipid- dependent mechanisms.
Exosomes are enriched in cholesterol, sphingomyelin, saturated phosphatidylcholine and phosphatidylethanolamine as compared to the plasma membrane of the cell.
Isolation
The isolation and detection of exosomes has proven to be complicated.
Due to the complexity of body fluids, physical separation of exosomes from cells and similar-sized particles is challenging. Isolation of exosomes using differential ultracentrifugation results in co-isolation of protein and other contaminants and incomplete separation of vesicles from lipoproteins.
Combining ultracentrifugation with micro-filtration or a
gradient
In vector calculus, the gradient of a scalar-valued differentiable function f of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p gives the direction and the rate of fastest increase. The g ...
can improve purity.
Single step isolation of extracellular vesicles by size-exclusion chromatography has been demonstrated to provide greater efficiency for recovering intact vesicles over centrifugation,
although a size-based technique alone will not be able to distinguish exosomes from other vesicle types. To isolate a pure population of exosomes a combination of techniques is necessary, based on both physical (e.g. size, density) and biochemical parameters (e.g. presence/absence of certain proteins involved in their biogenesis).
The use of reference materials such as trackable recombinant EV will assist in mitigating technical variation introduced during sample preparation and analysis. Novel selective isolation methodology has been using a combination of immunoaffinity chromatography and
asymmetric-flow field-flow fractionation to reduce the contamination from lipoproteins and other proteins when isolating from blood plasma.
Exosomes are small extracellular vesicles that play a crucial role in cell-to-cell communication by transporting proteins, lipids, microRNAs, and functional mRNAs. Their potential in disease diagnostics, prognostics, and therapeutics has garnered significant interest in the biomedical field. Traditional methods for isolating exosomes are often hindered by low purity, inefficiency, lengthy processing times, and the need for substantial sample volumes and specialized equipment. Recent advancements in microfluidic devices, particularly those integrating nanostructures, offer promising alternatives for exosome isolation. These devices can be categorized based on their capture mechanisms: passive-structure-based affinity, immunomagnetic-based affinity, filtration, acoustofluidics, electrokinetics, and optofluidics. Microfluidic platforms not only improve the efficiency and purity of exosome isolation but also address the limitations of conventional methods, paving the way for their application in both research and clinical settings.
Often, functional as well as antigenic assays are applied to derive useful information from multiple exosomes. Well-known examples of assays to detect proteins in total populations of exosomes are
mass spectrometry
Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a ''mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is used ...
and
Western blot
The western blot (sometimes called the protein immunoblot), or western blotting, is a widely used analytical technique in molecular biology and immunogenetics to detect specific proteins in a sample of tissue homogenate or extract. Besides detect ...
. However, a limitation of these methods is that contaminants may be present that affect the information obtained from such assays. Preferably, information is derived from single exosomes. Relevant properties of exosomes to detect include size, density, morphology, composition, and
zeta potential
Zeta potential is the electrical potential at the slipping plane. This plane is the interface which separates mobile fluid from fluid that remains attached to the surface.is a scientific term for Electrokinetic phenomena, electrokinetic Electric ...
.
Detection
Since the diameter of exosomes is typically below 100 nm and because they have a low
refractive index
In optics, the refractive index (or refraction index) of an optical medium is the ratio of the apparent speed of light in the air or vacuum to the speed in the medium. The refractive index determines how much the path of light is bent, or refrac ...
, exosomes are below the detection range of many currently used techniques. A number of miniaturized systems, exploiting nanotechnology and microfluidics, have been developed to expedite exosome analyses. These new systems include a microNMR device,
a nanoplasmonic chip,
and a magneto-electrochemical sensor
for protein profiling; and an integrated fluidic cartridge for RNA detection.
Flow cytometry
Flow cytometry (FC) is a technique used to detect and measure the physical and chemical characteristics of a population of cells or particles.
In this process, a sample containing cells or particles is suspended in a fluid and injected into the ...
is an optical method to detect exosomes in suspension. Nevertheless, the applicability of flow cytometry to detect single exosomes is still inadequate due to limited sensitivity and potential measurement artifacts such as swarm detection.
Other methods to detect single exosomes are
atomic force microscopy
Atomic force microscopy (AFM) or scanning force microscopy (SFM) is a very-high-resolution type of scanning probe microscopy (SPM), with demonstrated resolution on the order of fractions of a nanometer, more than 1000 times better than the opti ...
,
nanoparticle tracking analysis, Raman microspectroscopy,
tunable resistive pulse sensing, and
transmission electron microscopy
Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a g ...
.
Bioinformatics analysis
Exosomes contain RNA, proteins, lipids and metabolites that is reflective of the cell type of origin. As exosomes contain numerous proteins, RNA and lipids, large scale analysis including
proteomics
Proteomics is the large-scale study of proteins. Proteins are vital macromolecules of all living organisms, with many functions such as the formation of structural fibers of muscle tissue, enzymatic digestion of food, or synthesis and replicatio ...
and
transcriptomics
Transcriptomics technologies are the techniques used to study an organism's transcriptome, the sum of all of its RNA, RNA transcripts. The information content of an organism is recorded in the DNA of its genome and Gene expression, expressed throu ...
is often performed. Currently, to analyse these data, non-commercial tools such as FunRich
can be used to identify over-represented groups of molecules. With the advent of Next generation sequencing technologies, the research on exosomes have been accelerated in not only cancer but various diseases. Recently, bioinformatics-based analysis of RNA-Seq data of exosomes extracted from ''
Trypanosoma cruzi
''Trypanosoma cruzi'' is a species of parasitic euglenoids. Among the protozoa, the trypanosomes characteristically bore tissue in another organism and feed on blood (primarily) and also lymph. This behaviour causes disease or the likelihood ...
'' has shown the association of these extracellular vesicles with various important gene products that strengthens the probability of finding biomarkers for
Chagas disease
Chagas disease, also known as American trypanosomiasis, is a tropical parasitic disease caused by ''Trypanosoma cruzi''. It is spread mostly by insects in the subfamily Triatominae, known as "kissing bugs". The symptoms change throughout the ...
.
Therapeutics and carriers of drugs
Researchers have also found that exosomes released from oral keratinocytes can accelerate wound healing, even when human exosomes were applied to rat wounds.
Epidural
Epidural administration (from Ancient Greek ἐπί, "upon" + '' dura mater'') is a method of medication administration in which a medicine is injected into the epidural space around the spinal cord. The epidural route is used by physicians ...
or
facet joint
The facet joints (also zygapophysial joints, zygapophyseal, apophyseal, or Z-joints) are a set of synovial joint, synovial, plane joints between the articular processes of two adjacent vertebrae. There are two facet joints in each functional s ...
space administration of exosomes has been shown to be a safe and effective treatment for
low back pain
Low back pain or wiktionary:lumbago#Etymology, lumbago is a common musculoskeletal disorders, disorder involving the muscles, nerves, and bones of the back, in between the lower edge of the ribs and the lower fold of the buttocks. Pain can var ...
in some studies, but more studies are required to verify these results.
Exosome-mediated delivery of
superoxide dismutase
Superoxide dismutase (SOD, ) is an enzyme that alternately catalyzes the dismutation (or partitioning) of the superoxide () anion radical into normal molecular oxygen (O2) and hydrogen peroxide (). Superoxide is produced as a by-product of oxy ...
extends life-span in ''
Caenorhabditis elegans
''Caenorhabditis elegans'' () is a free-living transparent nematode about 1 mm in length that lives in temperate soil environments. It is the type species of its genus. The name is a Hybrid word, blend of the Greek ''caeno-'' (recent), ''r ...
'', apparently by reducing the level of
reactive oxygen species
In chemistry and biology, reactive oxygen species (ROS) are highly Reactivity (chemistry), reactive chemicals formed from diatomic oxygen (), water, and hydrogen peroxide. Some prominent ROS are hydroperoxide (H2O2), superoxide (O2−), hydroxyl ...
.
Thus this system is being studied for its anti-aging potential.
[ This delivery system also improved survival under conditions of ]oxidative stress
Oxidative stress reflects an imbalance between the systemic manifestation of reactive oxygen species and a biological system's ability to readily detoxify the reactive intermediates or to repair the resulting damage. Disturbances in the normal ...
and heat.[
Exosomes are being actively researched for their potential in various therapeutic applications. For instance, dendritic cell (DC)-derived exosome vaccines, designed to present tumor antigens to the immune system, are undergoing clinical trials to evaluate their ability to generate personalized anti-tumor immune responses. These exosome-based vaccines have shown potential in generating strong cytotoxic T-lymphocyte responses in cancers like colorectal cancer and are being explored in trials for chronic diseases, such as diabetes and kidney disorders.
Additionally, exosomes are promising carriers for chemotherapeutic agents like doxorubicin and paclitaxel. These engineered exosomes can deliver drugs directly to tumors, thereby minimizing off-target effects while enhancing therapeutic efficacy . Exosomes' ability to cross biological barriers, such as the blood-brain barrier, makes them attractive for treating neurological diseases like glioblastoma and Alzheimer's disease. Preclinical studies suggest that exosomes loaded with amyloid-beta-clearing enzymes or antibodies can reduce amyloid-beta plaques, offering a potential treatment for Alzheimer's .
Moreover, exosomes derived from mesenchymal stem cells (MSCs) are being studied for their ability to promote tissue repair, particularly in cardiac repair post-myocardial infarction, where they deliver cardioprotective molecules that enhance recovery . Exosomes are also being investigated for their role in treating autoimmune conditions like multiple sclerosis and rheumatoid arthritis, where they can carry anti-inflammatory agents to regulate immune responses. The versatility of exosomes continues to expand as they are also explored as vaccine platforms, particularly for infectious diseases such as COVID-19
]
Unapproved marketing
Different forms of unproven exosomes are being marketed in the U.S. for a wide variety of health conditions by clinic firms, without authorization from the FDA. Often, these firms also sell non-FDA-approved stem cell injections as well. In late 2019, the FDA issued an advisory warning about noncompliant marketing of exosomes and injuries to patients in Nebraska related to injections of exosomes. The agency also indicated that exosomes are officially drug products requiring pre-market approval. In 2020, the FDA cautioned several firms about marketing or use of exosomes for COVID-19 and other health conditions.
Unapproved marketing of exosomes remains a persistent issue in the U.S., with some companies exploiting regulatory gaps and consumer confusion about these emerging therapies. These companies often operate in a grey zone, marketing exosome products as "minimally manipulated" and thereby attempting to avoid strict FDA regulations. In response, the FDA has increased its enforcement actions in recent years, emphasizing the need for exosome-based products to meet rigorous standards of safety and efficacy, similar to other biological drugs.
The FDA's warnings, particularly around exosome treatments for COVID-19, highlighted how some firms were capitalizing on the global pandemic to promote unverified therapies under the guise of immunity boosters or infection preventatives. Moreover, newer reports indicate that clinics continue to market exosomes for anti-aging, joint pain, and even neurological conditions like Alzheimer's, despite the lack of clinical evidence supporting these claims. Critics argue that this is a dangerous trend, with patients at risk of adverse effects such as inflammation, infection, and in some cases, serious injury.
Interestingly, some clinics are now leveraging the loophole of "cosmetic" labeling to avoid scrutiny. They market exosomes in skincare products, claiming benefits like wrinkle reduction or skin rejuvenation. However, the FDA continues to assert that any use of exosomes, whether for cosmetic or therapeutic purposes, requires formal review and approval due to the potential biological effects of these extracellular vesicles. Regulatory experts warn that such practices, if unchecked, could undermine the credibility of legitimate exosome research and therapeutics being developed through proper channels.
See also
* Prostasomes
* Microvesicles
* Vesicles
* ExoCarta – database of molecules shown to be present in exosomes
References
{{Organelles
Vesicles
Body fluids
Medical tests