Spaceflight applications
Rockets
Umbilicals connect a missile or space vehicle to ground support equipment on the launch pad before launch. Cables carry electrical power, communications, and telemetry, and pipes or hoses carry liquid propellants, cryogenic fluids, and pressurizing and purge gases. These are automatically disconnected shortly before or at launch. Umbilical connections are also used between rocket stages, and between the rocket and its spacecraft payload; these umbilicals are disconnected as stages are disconnected and discarded.Space suits
Subsea applications
Subsea umbilicals are deployed on the seabed (ocean floor) to supply necessary control, energy (electric, hydraulic) and chemicals to subsea oil and gas wells, subsea manifolds and any subsea system requiring remote control, such as a remotely operated vehicle. Subsea intervention umbilicals are also used for offshore drilling or workover activities.Diver
A diver's umbilical is a group of components which supply breathing gas and other services from the surface control point to a diver. It is part of the life support system and will usually be inspected before use, and maintained and tested at specified intervals. The umbilical components are connected to the appropriate connectors on the diver's equipment, mostly on the helmet or full-face mask, and the strength member is usually attached to a strong D-ring on the diver's harness using a screw-gate carabiner or similar connector which will not accidentally release or snag on lines. The US Navy specify a snap-shackle for this function. For shallow water surface supply air diving, the diver's umbilical is typically a 3-part umbilical comprising a bore breathing gas hose, bore pneumofathometer ("pneumo") hose, and diver communications cable, which usually also serves as a lifeline strength member. The pneumo hose is open at the diver's end and the other end is connected to a pressure gauge on the surface gas panel, where the supervisor can use it to measure the diver's depth in the water at any time. This is done by measuring pressure of the air in the pneumo hose after a thin stream of bubbles has been emitted from the open end which ensures that the hose has been purged of water so that the internal gas pressure is effectively constant and equal to the ambient pressure at the open end. The umbilical serves as a lifeline and must be capable of lifting the diver out of the water safely. Maximum permitted service life for rubber breathing air hoses is 12 years, but synthetic (unfilled polyurethane elastomer) lined hoses may be used without time limit while in good condition as long as they pass inspection and testing. Hot water supply hoses are more likely to be rubber lined, and polyurethane external sheathing is common for all umbilical hoses and cables. A typical 4-part diver umbilical will also have a bore hot water supply hose for the diver's exposure suit. A 5-part diver umbilical will also include a video cable to allow the surface controller to see the video picture transmitted to the surface from the diver's hat camera (video camera mounted on the helmet, facing forward, with a field of vision similar to that of the diver). An excursion umbilical from a wet bell would be similar in construction, but shorter than an umbilical supplied directly from the surface for similar work. For saturation diving from a closed bell, a typical diver excursion umbilical may be an 8-part umbilical with a breathing gas supply hose, gas reclaim hose, hot water hose, pneumo hose, tracking hose, communications and lifeline cable, video cable and hat light power cable. Early diver umbilicals were simply the individual components bundled together and taped every metre or so with duct tape. These bundles tend to distort and produce kinks in the components caused by bending (particularly dangerous if the kink is in the divers gas supply hose), and require frequent maintenance. More recent umbilicals usually comprise all the components laid together like a twisted rope, so that there is little chance of a kink, no separate lifeline component is required, and no tape is required to hold the umbilical together. An additional component such as a video cable for a diver's camera, or a hat light cable, can be added by manually wrapping this additional component into the lay of the existing cabled umbilical. When there is risk of the umbilical cable being damaged by scratching on rock, coral or wreckage, the umbilical bundle may be over-braided with a polypropylene braid cover, or a velcro fastened textile cover.Diving bell
ROV
Most ROVs are linked to a host ship by a neutrally buoyant tether or a load-carrying umbilical cable is used along with a tether management system (TMS). The TMS is either a garage-like device which contains the ROV during lowering through the splash zone or, on larger work-class ROVs, a separate assembly mounted on top of the ROV. The purpose of the TMS is to lengthen and shorten the tether so the effect of cable drag where there are underwater currents is minimized. The umbilical cable is an armored cable that contains a group of electrical conductors and fiber optics that carry electric power, video, and data signals between the operator and the TMS. Where used, the TMS relays the signals and power for the ROV down the tether cable. Once at the ROV, the power is distributed between the electrical components.See also
* * *References
{{DEFAULTSORT:Umbilical Cable Cables Diving equipment