
Stellar evolution is the process by which a
star
A star is an astronomical object comprising a luminous spheroid of plasma (physics), plasma held together by its gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked ...
changes over the course of time. Depending on the mass of the star, its lifetime can range from a few million years for the most massive to trillions of years for the least massive, which is considerably longer than the
age of the universe. The table shows the lifetimes of stars as a function of their masses. All stars are formed from
collapsing clouds of gas and dust, often called
nebula
A nebula ('cloud' or 'fog' in Latin; pl. nebulae, nebulæ or nebulas) is a distinct luminescent part of interstellar medium, which can consist of ionized, neutral or molecular hydrogen and also cosmic dust. Nebulae are often star-forming regio ...
e or
molecular clouds. Over the course of millions of years, these
protostars settle down into a state of equilibrium, becoming what is known as a
main-sequence star.
Nuclear fusion powers a star for most of its existence. Initially the energy is generated by the fusion of
hydrogen atoms at the
core of the main-sequence star. Later, as the preponderance of atoms at the core becomes
helium, stars like the
Sun begin to fuse hydrogen along a spherical shell surrounding the core. This process causes the star to gradually grow in size, passing through the
subgiant stage until it reaches the
red-giant phase. Stars with at least half the mass of the Sun can also begin to generate energy through the fusion of helium at their core, whereas more-massive stars can fuse heavier elements along a series of concentric shells. Once a star like the Sun has exhausted its nuclear fuel, its core collapses into a dense
white dwarf and the outer layers are expelled as a
planetary nebula. Stars with around ten or more times the mass of the Sun can explode in a
supernova
A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or when ...
as their inert iron cores collapse into an extremely dense
neutron star or
black hole
A black hole is a region of spacetime where gravitation, gravity is so strong that nothing, including light or other Electromagnetic radiation, electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts t ...
. Although the
universe is not old enough for any of the smallest
red dwarf
''Red Dwarf'' is a British science fiction comedy franchise created by Rob Grant and Doug Naylor, which primarily consists of a television sitcom that aired on BBC Two between 1988 and 1999, and on Dave since 2009, gaining a cult following. T ...
s to have reached the end of their existence,
stellar model
This glossary of astronomy is a list of definitions of terms and concepts relevant to astronomy and cosmology, their sub-disciplines, and related fields. Astronomy is concerned with the study of celestial objects and phenomena that originate outsid ...
s suggest they will slowly become brighter and hotter before running out of hydrogen fuel and becoming low-mass white dwarfs.
Stellar evolution is not studied by observing the life of a single star, as most stellar changes occur too slowly to be detected, even over many centuries. Instead, astrophysicists come to understand how stars evolve by observing numerous stars at various points in their lifetime, and by simulating
stellar structure using
computer models.
Star formation
Protostar
Stellar evolution starts with the
gravitational collapse
Gravitational collapse is the contraction of an astronomical object due to the influence of its own gravity, which tends to draw matter inward toward the center of gravity. Gravitational collapse is a fundamental mechanism for structure formatio ...
of a
giant molecular cloud. Typical giant molecular clouds are roughly across and contain up to . As it collapses, a giant molecular cloud breaks into smaller and smaller pieces. In each of these fragments, the collapsing gas releases
gravitational potential energy as heat. As its temperature and pressure increase, a fragment condenses into a rotating ball of superhot gas known as a
protostar. Filamentary structures are truly ubiquitous in the molecular cloud. Dense molecular filaments will fragment into gravitationally bound cores, which are the precursors of stars. Continuous accretion of gas, geometrical bending, and magnetic fields may control the detailed fragmentation manner of the filaments. In supercritical filaments, observations have revealed quasi-periodic chains of dense cores with spacing comparable to the filament inner width, and embedded two protostars with gas outflows.
A protostar continues to grow by
accretion
Accretion may refer to:
Science
* Accretion (astrophysics), the formation of planets and other bodies by collection of material through gravity
* Accretion (meteorology), the process by which water vapor in clouds forms water droplets around nucl ...
of gas and dust from the molecular cloud, becoming a
pre-main-sequence star as it reaches its final mass. Further development is determined by its mass. Mass is typically compared to the mass of the
Sun: means 1 solar mass.
Protostars are encompassed in dust, and are thus more readily visible at
infrared wavelengths.
Observations from the
Wide-field Infrared Survey Explorer (WISE) have been especially important for unveiling numerous galactic
protostars and their parent
star cluster
Star clusters are large groups of stars. Two main types of star clusters can be distinguished: globular clusters are tight groups of ten thousand to millions of old stars which are gravitationally bound, while open clusters are more loosely clust ...
s.
[Majaess, D. (2013)]
''Discovering protostars and their host clusters via WISE''
ApSS, 344, 1
''VizieR catalog''
Brown dwarfs and sub-stellar objects
Protostars with masses less than roughly never reach temperatures high enough for
nuclear fusion of hydrogen to begin. These are known as
brown dwarfs. The
International Astronomical Union defines brown dwarfs as stars massive enough to
fuse deuterium at some point in their lives (13
Jupiter masses (), 2.5 × 10
28 kg, or ). Objects smaller than are classified as
sub-brown dwarf
A sub-brown dwarf or planetary-mass brown dwarf is an astronomical object that formed in the same manner as stars and brown dwarfs (i.e. through the collapse of a gas cloud) but that has a planetary mass, therefore by definition below the limi ...
s (but if they orbit around another stellar object they are classified as planets). Both types, deuterium-burning and not, shine dimly and fade away slowly, cooling gradually over hundreds of millions of years.
Main sequence stellar mass objects
For a more-massive protostar, the core temperature will eventually reach 10 million
kelvin, initiating the
proton–proton chain reaction and allowing
hydrogen to fuse, first to
deuterium and then to
helium. In stars of slightly over , the carbon–nitrogen–oxygen fusion reaction (
CNO cycle) contributes a large portion of the energy generation. The onset of nuclear fusion leads relatively quickly to a
hydrostatic equilibrium in which energy released by the core maintains a high gas pressure, balancing the weight of the star's matter and preventing further gravitational collapse. The star thus evolves rapidly to a stable state, beginning the
main-sequence phase of its evolution.
A new star will sit at a specific point on the main sequence of the
Hertzsprung–Russell diagram
The Hertzsprung–Russell diagram, abbreviated as H–R diagram, HR diagram or HRD, is a scatter plot of stars showing the relationship between the stars' absolute magnitudes or luminosity, luminosities versus their stellar classifications or eff ...
, with the main-sequence
spectral type depending upon the mass of the star. Small, relatively cold, low-mass
red dwarf
''Red Dwarf'' is a British science fiction comedy franchise created by Rob Grant and Doug Naylor, which primarily consists of a television sitcom that aired on BBC Two between 1988 and 1999, and on Dave since 2009, gaining a cult following. T ...
s fuse hydrogen slowly and will remain on the main sequence for hundreds of billions of years or longer, whereas massive, hot
O-type stars
An O-type star is a hot, blue-white star of spectral type O in the Yerkes classification system employed by astronomers. They have temperatures in excess of 30,000 kelvin (K). Stars of this type have strong absorption lines of ionised helium, s ...
will leave the main sequence after just a few million years. A mid-sized
yellow dwarf star, like the Sun, will remain on the main sequence for about 10 billion years. The Sun is thought to be in the middle of its main sequence lifespan.
Planetary system

A star may gain a
protoplanetary disk, which furthermore can develop into a
planetary system
A planetary system is a set of gravitationally
In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interacti ...
.
Mature stars

Eventually the star's core exhausts its supply of hydrogen and the star begins to evolve off the
main sequence
In astronomy, the main sequence is a continuous and distinctive band of stars that appears on plots of stellar color versus brightness. These color-magnitude plots are known as Hertzsprung–Russell diagrams after their co-developers, Ejnar Her ...
. Without the outward
radiation pressure generated by the fusion of hydrogen to counteract the force of
gravity, the core contracts until either
electron degeneracy pressure becomes sufficient to oppose gravity or the core becomes hot enough (around 100 MK) for
helium fusion to begin. Which of these happens first depends upon the star's mass.
Low-mass stars
What happens after a low-mass star ceases to produce energy through fusion has not been directly observed; the
universe is around 13.8 billion years old, which is less time (by several orders of magnitude, in some cases) than it takes for fusion to cease in such stars.
Recent astrophysical models suggest that
red dwarf
''Red Dwarf'' is a British science fiction comedy franchise created by Rob Grant and Doug Naylor, which primarily consists of a television sitcom that aired on BBC Two between 1988 and 1999, and on Dave since 2009, gaining a cult following. T ...
s of may stay on the main sequence for some six to twelve trillion years, gradually increasing in both
temperature and
luminosity
Luminosity is an absolute measure of radiated electromagnetic power (light), the radiant power emitted by a light-emitting object over time. In astronomy, luminosity is the total amount of electromagnetic energy emitted per unit of time by a st ...
, and take several hundred billion years more to collapse, slowly, into a
white dwarf.
Such stars will not become red giants as the whole star is a
convection zone and it will not develop a degenerate helium core with a shell burning hydrogen. Instead, hydrogen fusion will proceed until almost the whole star is helium.
Slightly more
massive stars do expand into
red giant
A red giant is a luminous giant star of low or intermediate mass (roughly 0.3–8 solar masses ()) in a late phase of stellar evolution. The outer atmosphere is inflated and tenuous, making the radius large and the surface temperature around or ...
s, but their helium cores are not massive enough to reach the temperatures required for helium fusion so they never reach the tip of the red-giant branch. When hydrogen shell burning finishes, these stars move directly off the red-giant branch like a post-
asymptotic-giant-branch (AGB) star, but at lower luminosity, to become a white dwarf.
A star with an initial mass about will be able to reach temperatures high enough to fuse helium, and these "mid-sized" stars go on to further stages of evolution beyond the red-giant branch.
Mid-sized stars

Stars of roughly become
red giant
A red giant is a luminous giant star of low or intermediate mass (roughly 0.3–8 solar masses ()) in a late phase of stellar evolution. The outer atmosphere is inflated and tenuous, making the radius large and the surface temperature around or ...
s, which are large non-
main-sequence stars of
stellar classification
In astronomy, stellar classification is the classification of stars based on their stellar spectrum, spectral characteristics. Electromagnetic radiation from the star is analyzed by splitting it with a Prism (optics), prism or diffraction grati ...
K or M. Red giants lie along the right edge of the Hertzsprung–Russell diagram due to their red color and large luminosity. Examples include
Aldebaran in the constellation
Taurus and
Arcturus in the constellation of
Boötes
Boötes ( ) is a constellation in the northern sky, located between 0° and +60° declination, and 13 and 16 hours of right ascension on the celestial sphere. The name comes from la, Boōtēs, which comes from grc-gre, Βοώτης, Boṓtēs ...
.
Mid-sized stars are red giants during two different phases of their post-main-sequence evolution: red-giant-branch stars, with inert cores made of helium and hydrogen-burning shells, and asymptotic-giant-branch stars, with inert cores made of carbon and helium-burning shells inside the hydrogen-burning shells. Between these two phases, stars spend a period on the
horizontal branch
The horizontal branch (HB) is a stage of stellar evolution that immediately follows the red-giant branch in stars whose masses are similar to the Sun's. Horizontal-branch stars are powered by helium fusion in the core (via the triple-alpha process) ...
with a helium-fusing core. Many of these helium-fusing stars cluster towards the cool end of the horizontal branch as K-type giants and are referred to as
red clump giants.
Subgiant phase
When a star exhausts the hydrogen in its core, it leaves the main sequence and begins to fuse hydrogen in a shell outside the core. The core increases in mass as the shell produces more helium. Depending on the mass of the helium core, this continues for several million to one or two billion years, with the star expanding and cooling at a similar or slightly lower luminosity to its main sequence state. Eventually either the core becomes degenerate, in stars around the mass of the sun, or the outer layers cool sufficiently to become opaque, in more massive stars. Either of these changes cause the hydrogen shell to increase in temperature and the luminosity of the star to increase, at which point the star expands onto the red-giant branch.
Red-giant-branch phase
The expanding outer layers of the star are
convective
Convection is single or multiphase fluid flow that occurs spontaneously due to the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity (see buoyancy). When the cause of the convect ...
, with the material being mixed by turbulence from near the fusing regions up to the surface of the star. For all but the lowest-mass stars, the fused material has remained deep in the stellar interior prior to this point, so the convecting envelope makes fusion products visible at the star's surface for the first time. At this stage of evolution, the results are subtle, with the largest effects, alterations to the
isotopes of hydrogen and helium, being unobservable. The effects of the
CNO cycle appear at the surface during the first
dredge-up, with lower
12C/
13C ratios and altered proportions of carbon and nitrogen. These are detectable with
spectroscopy
Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter wa ...
and have been measured for many evolved stars.
The helium core continues to grow on the red-giant branch. It is no longer in thermal equilibrium, either degenerate or above the
Schönberg–Chandrasekhar limit, so it increases in temperature which causes the rate of fusion in the hydrogen shell to increase. The star increases in luminosity towards the
tip of the red-giant branch. Red-giant-branch stars with a degenerate helium core all reach the tip with very similar core masses and very similar luminosities, although the more massive of the red giants become hot enough to ignite helium fusion before that point.
Horizontal branch
In the helium cores of stars in the 0.6 to 2.0 solar mass range, which are largely supported by
electron degeneracy pressure, helium fusion will ignite on a timescale of days in a
helium flash
A helium flash is a very brief thermal runaway nuclear fusion of large quantities of helium into carbon through the triple-alpha process in the core of low mass stars (between 0.8 solar masses () and 2.0 ) during their red giant phase (the Sun is ...
. In the nondegenerate cores of more massive stars, the ignition of helium fusion occurs relatively slowly with no flash. The nuclear power released during the helium flash is very large, on the order of 10
8 times the luminosity of the Sun for a few days
and 10
11 times the luminosity of the Sun (roughly the luminosity of the
Milky Way Galaxy) for a few seconds.
However, the energy is consumed by the thermal expansion of the initially degenerate core and thus cannot be seen from outside the star.
Due to the expansion of the core, the hydrogen fusion in the overlying layers slows and total energy generation decreases. The star contracts, although not all the way to the main sequence, and it migrates to the
horizontal branch
The horizontal branch (HB) is a stage of stellar evolution that immediately follows the red-giant branch in stars whose masses are similar to the Sun's. Horizontal-branch stars are powered by helium fusion in the core (via the triple-alpha process) ...
on the Hertzsprung–Russell diagram, gradually shrinking in radius and increasing its surface temperature.
Core helium flash stars evolve to the red end of the horizontal branch but do not migrate to higher temperatures before they gain a degenerate carbon-oxygen core and start helium shell burning. These stars are often observed as a
red clump of stars in the colour-magnitude diagram of a cluster, hotter and less luminous than the red giants. Higher-mass stars with larger helium cores move along the horizontal branch to higher temperatures, some becoming unstable pulsating stars in the yellow
instability strip
The unqualified term instability strip usually refers to a region of the Hertzsprung–Russell diagram largely occupied by several related classes of pulsating variable stars: Delta Scuti variables, SX Phoenicis variables, and rapidly oscillati ...
(
RR Lyrae variables
RR Lyrae variables are periodic variable stars, commonly found in globular clusters. They are used as standard candles to measure (extra) galactic distances, assisting with the cosmic distance ladder. This class is named after the prototype and ...
), whereas some become even hotter and can form a blue tail or blue hook to the horizontal branch. The morphology of the horizontal branch depends on parameters such as metallicity, age, and helium content, but the exact details are still being modelled.
Asymptotic-giant-branch phase
After a star has consumed the helium at the core, hydrogen and helium fusion continues in shells around a hot core of
carbon and
oxygen. The star follows the
asymptotic giant branch
The asymptotic giant branch (AGB) is a region of the Hertzsprung–Russell diagram populated by evolved cool luminous stars. This is a period of stellar evolution undertaken by all low- to intermediate-mass stars (about 0.5 to 8 solar masses) lat ...
on the Hertzsprung–Russell diagram, paralleling the original red-giant evolution, but with even faster energy generation (which lasts for a shorter time). Although helium is being burnt in a shell, the majority of the energy is produced by hydrogen burning in a shell further from the core of the star. Helium from these hydrogen burning shells drops towards the center of the star and periodically the energy output from the helium shell increases dramatically. This is known as a
thermal pulse and they occur towards the end of the asymptotic-giant-branch phase, sometimes even into the post-asymptotic-giant-branch phase. Depending on mass and composition, there may be several to hundreds of thermal pulses.
There is a phase on the ascent of the asymptotic-giant-branch where a deep convective zone forms and can bring carbon from the core to the surface. This is known as the second dredge up, and in some stars there may even be a third dredge up. In this way a
carbon star
A carbon star (C-type star) is typically an asymptotic giant branch star, a luminous red giant, whose atmosphere contains more carbon than oxygen. The two elements combine in the upper layers of the star, forming carbon monoxide, which consumes mos ...
is formed, very cool and strongly reddened stars showing strong carbon lines in their spectra. A process known as hot bottom burning may convert carbon into oxygen and nitrogen before it can be dredged to the surface, and the interaction between these processes determines the observed luminosities and spectra of carbon stars in particular clusters.
Another well known class of asymptotic-giant-branch stars is the
Mira variables, which pulsate with well-defined periods of tens to hundreds of days and large amplitudes up to about 10 magnitudes (in the visual, total luminosity changes by a much smaller amount). In more-massive stars the stars become more luminous and the pulsation period is longer, leading to enhanced mass loss, and the stars become heavily obscured at visual wavelengths. These stars can be observed as
OH/IR star
__notoc__
An OH/IR star is an asymptotic giant branch (AGB) or a red supergiant or hypergiant (RSG or RHG) star that shows strong OH maser emission and is unusually bright at near-infrared wavelengths.
In the very late stages of AGB evolution, a ...
s, pulsating in the infrared and showing OH
maser activity. These stars are clearly oxygen rich, in contrast to the carbon stars, but both must be produced by dredge ups.
Post-AGB
These mid-range stars ultimately reach the tip of the asymptotic-giant-branch and run out of fuel for shell burning. They are not sufficiently massive to start full-scale carbon fusion, so they contract again, going through a period of post-asymptotic-giant-branch superwind to produce a planetary nebula with an extremely hot central star. The central star then cools to a white dwarf. The expelled gas is relatively rich in heavy elements created within the star and may be particularly
oxygen or
carbon enriched, depending on the type of the star. The gas builds up in an expanding shell called a
circumstellar envelope and cools as it moves away from the star, allowing
dust particles and molecules to form. With the high infrared energy input from the central star, ideal conditions are formed in these circumstellar envelopes for
maser excitation.
It is possible for thermal pulses to be produced once post-asymptotic-giant-branch evolution has begun, producing a variety of unusual and poorly understood stars known as born-again asymptotic-giant-branch stars.
These may result in extreme
horizontal-branch
The horizontal branch (HB) is a stage of stellar evolution that immediately follows the red-giant branch in stars whose masses are similar to the Sun's. Horizontal-branch stars are powered by helium fusion in the core (via the triple-alpha process) ...
stars (
subdwarf B star
A B-type subdwarf (sdB) is a kind of subdwarf star with spectral type B. They differ from the typical subdwarf by being much hotter and brighter. They are situated at the "extreme horizontal branch" of the Hertzsprung–Russell diagram. Masses o ...
s), hydrogen deficient post-asymptotic-giant-branch stars, variable planetary nebula central stars, and
R Coronae Borealis variable
An R Coronae Borealis variable (abbreviated RCB, R CrB) is an eruptive variable star that varies in luminosity in two modes, one low amplitude pulsation (a few tenths of a magnitude), and one irregular, unpredictably-sudden fading by 1 to 9 ma ...
s.
Massive stars
In massive stars, the core is already large enough at the onset of the hydrogen burning shell that helium ignition will occur before electron degeneracy pressure has a chance to become prevalent. Thus, when these stars expand and cool, they do not brighten as dramatically as lower-mass stars; however, they were more luminous on the main sequence and they evolve to highly luminous supergiants. Their cores become massive enough that they cannot support themselves by
electron degeneracy
Electron degeneracy pressure is a particular manifestation of the more general phenomenon of quantum degeneracy pressure. The Pauli exclusion principle disallows two identical half-integer spin particles (electrons and all other fermions) from sim ...
and will eventually collapse to produce a
neutron star or
black hole
A black hole is a region of spacetime where gravitation, gravity is so strong that nothing, including light or other Electromagnetic radiation, electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts t ...
.
Supergiant evolution
Extremely massive stars (more than approximately ), which are very luminous and thus have very rapid stellar winds, lose mass so rapidly due to radiation pressure that they tend to strip off their own envelopes before they can expand to become
red supergiants, and thus retain extremely high surface temperatures (and blue-white color) from their main-sequence time onwards. The largest stars of the current generation are about because the outer layers would be expelled by the extreme radiation. Although lower-mass stars normally do not burn off their outer layers so rapidly, they can likewise avoid becoming red giants or red supergiants if they are in binary systems close enough so that the companion star strips off the envelope as it expands, or if they rotate rapidly enough so that convection extends all the way from the core to the surface, resulting in the absence of a separate core and envelope due to thorough mixing.
The core of a massive star, defined as the region depleted of hydrogen, grows hotter and denser as it accretes material from the fusion of hydrogen outside the core. In sufficiently massive stars, the core reaches temperatures and densities high enough to fuse carbon and heavier elements via the
alpha process. At the end of helium fusion, the core of a star consists primarily of carbon and oxygen. In stars heavier than about , the carbon ignites and
fuses to form neon, sodium, and magnesium. Stars somewhat less massive may partially ignite carbon, but they are unable to fully fuse the carbon before
electron degeneracy
Electron degeneracy pressure is a particular manifestation of the more general phenomenon of quantum degeneracy pressure. The Pauli exclusion principle disallows two identical half-integer spin particles (electrons and all other fermions) from sim ...
sets in, and these stars will eventually leave an oxygen-neon-magnesium
white dwarf.
The exact mass limit for full carbon burning depends on several factors such as metallicity and the detailed mass lost on the
asymptotic giant branch
The asymptotic giant branch (AGB) is a region of the Hertzsprung–Russell diagram populated by evolved cool luminous stars. This is a period of stellar evolution undertaken by all low- to intermediate-mass stars (about 0.5 to 8 solar masses) lat ...
, but is approximately .
[ After carbon burning is complete, the core of these stars reaches about and becomes hot enough for heavier elements to fuse. Before oxygen starts to ]fuse
Fuse or FUSE may refer to:
Devices
* Fuse (electrical), a device used in electrical systems to protect against excessive current
** Fuse (automotive), a class of fuses for vehicles
* Fuse (hydraulic), a device used in hydraulic systems to protect ...
, neon begins to capture electrons which triggers neon burning. For a range of stars of approximately , this process is unstable and creates runaway fusion resulting in an electron capture supernova
A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or when ...
.[
In more massive stars, the fusion of neon proceeds without a runaway deflagration. This is followed in turn by complete oxygen burning and silicon burning, producing a core consisting largely of ]iron-peak element
The iron peak is a local maximum in the vicinity of Iron, Fe (Chromium, Cr, Manganese, Mn, Fe, Cobalt, Co and Nickel, Ni) on the graph of the abundances of the chemical elements.
For elements lighter than iron on the periodic table, nuclear fusio ...
s. Surrounding the core are shells of lighter elements still undergoing fusion. The timescale for complete fusion of a carbon core to an iron core is so short, just a few hundred years, that the outer layers of the star are unable to react and the appearance of the star is largely unchanged. The iron core grows until it reaches an ''effective Chandrasekhar mass'', higher than the formal Chandrasekhar mass
The Chandrasekhar limit () is the maximum mass of a stable white dwarf star. The currently accepted value of the Chandrasekhar limit is about ().
White dwarfs resist gravitational collapse primarily through electron degeneracy pressure, compare ...
due to various corrections for the relativistic effects, entropy, charge, and the surrounding envelope. The effective Chandrasekhar mass for an iron core varies from about in the least massive red supergiants to more than in more massive stars. Once this mass is reached, electrons begin to be captured into the iron-peak nuclei and the core becomes unable to support itself. The core collapses and the star is destroyed, either in a supernova
A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or when ...
or direct collapse to a black hole
A black hole is a region of spacetime where gravitation, gravity is so strong that nothing, including light or other Electromagnetic radiation, electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts t ...
.[
]
Supernova
When the core of a massive star collapses, it will form a neutron star, or in the case of cores that exceed the Tolman–Oppenheimer–Volkoff limit The Tolman–Oppenheimer–Volkoff limit (or TOV limit) is an upper bound to the mass of cold, nonrotating neutron stars, analogous to the Chandrasekhar limit for white dwarf stars. If the mass of the said star reaches the limit it will collapse to ...
, a black hole
A black hole is a region of spacetime where gravitation, gravity is so strong that nothing, including light or other Electromagnetic radiation, electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts t ...
. Through a process that is not completely understood, some of the gravitational potential energy released by this core collapse is converted into a Type Ib, Type Ic, or Type II supernova
A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or when ...
. It is known that the core collapse produces a massive surge of neutrinos, as observed with supernova SN 1987A. The extremely energetic neutrinos fragment some nuclei; some of their energy is consumed in releasing nucleons
In physics and chemistry, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number (nucleon number).
Until the 1960s, nucleons we ...
, including neutrons
The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behave ...
, and some of their energy is transformed into heat and kinetic energy, thus augmenting the shock wave started by rebound of some of the infalling material from the collapse of the core. Electron capture in very dense parts of the infalling matter may produce additional neutrons. Because some of the rebounding matter is bombarded by the neutrons, some of its nuclei capture them, creating a spectrum of heavier-than-iron material including the radioactive elements up to (and likely beyond) uranium. Although non-exploding red giants can produce significant quantities of elements heavier than iron using neutrons released in side reactions of earlier nuclear reactions, the abundance of elements heavier than iron (and in particular, of certain isotopes of elements that have multiple stable or long-lived isotopes) produced in such reactions is quite different from that produced in a supernova. Neither abundance alone matches that found in the Solar System, so both supernovae and ejection of elements from red giants are required to explain the observed abundance of heavy elements and isotopes thereof.
The energy transferred from collapse of the core to rebounding material not only generates heavy elements, but provides for their acceleration well beyond escape velocity, thus causing a Type Ib, Type Ic, or Type II supernova. Current understanding of this energy transfer is still not satisfactory; although current computer models of Type Ib, Type Ic, and Type II supernovae account for part of the energy transfer, they are not able to account for enough energy transfer to produce the observed ejection of material. However, neutrino oscillations may play an important role in the energy transfer problem as they not only affect the energy available in a particular flavour of neutrinos but also through other general-relativistic effects on neutrinos.
Some evidence gained from analysis of the mass and orbital parameters of binary neutron stars (which require two such supernovae) hints that the collapse of an oxygen-neon-magnesium core may produce a supernova that differs observably (in ways other than size) from a supernova produced by the collapse of an iron core.
The most massive stars that exist today may be completely destroyed by a supernova with an energy greatly exceeding its gravitational binding energy. This rare event, caused by pair-instability, leaves behind no black hole remnant.[Pair Instability Supernovae and Hypernovae.](_blank)
Nicolay J. Hammer, (2003), accessed May 7, 2007. In the past history of the universe, some stars were even larger than the largest that exists today, and they would immediately collapse into a black hole at the end of their lives, due to photodisintegration.
Stellar remnants
After a star has burned out its fuel supply, its remnants can take one of three forms, depending on the mass during its lifetime.
White and black dwarfs
For a star of , the resulting white dwarf is of about , compressed into approximately the volume of the Earth. White dwarfs are stable because the inward pull of gravity is balanced by the degeneracy pressure
Degenerate matter is a highly dense state of fermionic matter in which the Pauli exclusion principle exerts significant pressure in addition to, or in lieu of, thermal pressure. The description applies to matter composed of electrons, protons, neu ...
of the star's electrons, a consequence of the Pauli exclusion principle. Electron degeneracy pressure provides a rather soft limit against further compression; therefore, for a given chemical composition, white dwarfs of higher mass have a smaller volume. With no fuel left to burn, the star radiates its remaining heat into space for billions of years.
A white dwarf is very hot when it first forms, more than 100,000 K at the surface and even hotter in its interior. It is so hot that a lot of its energy is lost in the form of neutrinos for the first 10 million years of its existence and will have lost most of its energy after a billion years.
The chemical composition of the white dwarf depends upon its mass. A star that has a mass of about 8-12 solar masses will ignite carbon fusion to form magnesium, neon, and smaller amounts of other elements, resulting in a white dwarf composed chiefly of oxygen, neon, and magnesium, provided that it can lose enough mass to get below the Chandrasekhar limit (see below), and provided that the ignition of carbon is not so violent as to blow the star apart in a supernova. A star of mass on the order of magnitude of the Sun will be unable to ignite carbon fusion, and will produce a white dwarf composed chiefly of carbon and oxygen, and of mass too low to collapse unless matter is added to it later (see below). A star of less than about half the mass of the Sun will be unable to ignite helium fusion (as noted earlier), and will produce a white dwarf composed chiefly of helium.
In the end, all that remains is a cold dark mass sometimes called a black dwarf. However, the universe is not old enough for any black dwarfs to exist yet.
If the white dwarf's mass increases above the Chandrasekhar limit, which is for a white dwarf composed chiefly of carbon, oxygen, neon, and/or magnesium, then electron degeneracy pressure fails due to electron capture and the star collapses. Depending upon the chemical composition and pre-collapse temperature in the center, this will lead either to collapse into a neutron star or runaway ignition of carbon and oxygen. Heavier elements favor continued core collapse, because they require a higher temperature to ignite, because electron capture onto these elements and their fusion products is easier; higher core temperatures favor runaway nuclear reaction, which halts core collapse and leads to a Type Ia supernova. These supernovae may be many times brighter than the Type II supernova marking the death of a massive star, even though the latter has the greater total energy release. This instability to collapse means that no white dwarf more massive than approximately can exist (with a possible minor exception for very rapidly spinning white dwarfs, whose centrifugal force due to rotation partially counteracts the weight of their matter). Mass transfer in a binary system may cause an initially stable white dwarf to surpass the Chandrasekhar limit.
If a white dwarf forms a close binary system with another star, hydrogen from the larger companion may accrete around and onto a white dwarf until it gets hot enough to fuse in a runaway reaction at its surface, although the white dwarf remains below the Chandrasekhar limit. Such an explosion is termed a nova
A nova (plural novae or novas) is a transient astronomical event that causes the sudden appearance of a bright, apparently "new" star (hence the name "nova", which is Latin for "new") that slowly fades over weeks or months. Causes of the dramati ...
.
Neutron stars
Ordinarily, atoms are mostly electron clouds by volume, with very compact nuclei at the center (proportionally, if atoms were the size of a football stadium, their nuclei would be the size of dust mites). When a stellar core collapses, the pressure causes electrons and protons to fuse by electron capture. Without electrons, which keep nuclei apart, the neutrons collapse into a dense ball (in some ways like a giant atomic nucleus), with a thin overlying layer of degenerate matter (chiefly iron unless matter of different composition is added later). The neutrons resist further compression by the Pauli exclusion principle, in a way analogous to electron degeneracy pressure, but stronger.
These stars, known as neutron stars, are extremely small—on the order of radius 10 km, no bigger than the size of a large city—and are phenomenally dense. Their period of rotation shortens dramatically as the stars shrink (due to conservation of angular momentum); observed rotational periods of neutron stars range from about 1.5 milliseconds (over 600 revolutions per second) to several seconds. When these rapidly rotating stars' magnetic poles are aligned with the Earth, we detect a pulse of radiation each revolution. Such neutron stars are called pulsar
A pulsar (from ''pulsating radio source'') is a highly magnetized rotating neutron star that emits beams of electromagnetic radiation out of its magnetic poles. This radiation can be observed only when a beam of emission is pointing toward Ea ...
s, and were the first neutron stars to be discovered. Though electromagnetic radiation detected from pulsars is most often in the form of radio waves, pulsars have also been detected at visible, X-ray, and gamma ray wavelengths.
Black holes
If the mass of the stellar remnant is high enough, the neutron degeneracy pressure will be insufficient to prevent collapse below the Schwarzschild radius. The stellar remnant thus becomes a black hole. The mass at which this occurs is not known with certainty, but is currently estimated at between 2 and .
Black holes are predicted by the theory of general relativity. According to classical general relativity, no matter or information can flow from the interior of a black hole to an outside observer, although quantum effects may allow deviations from this strict rule. The existence of black holes in the universe is well supported, both theoretically and by astronomical observation.
Because the core-collapse mechanism of a supernova is, at present, only partially understood, it is still not known whether it is possible for a star to collapse directly to a black hole without producing a visible supernova, or whether some supernovae initially form unstable neutron stars which then collapse into black holes; the exact relation between the initial mass of the star and the final remnant is also not completely certain. Resolution of these uncertainties requires the analysis of more supernovae and supernova remnants.
Models
A stellar evolutionary model is a mathematical model
A mathematical model is a description of a system using mathematical concepts and language. The process of developing a mathematical model is termed mathematical modeling. Mathematical models are used in the natural sciences (such as physics, ...
that can be used to compute the evolutionary phases of a star from its formation until it becomes a remnant. The mass and chemical composition of the star are used as the inputs, and the luminosity and surface temperature are the only constraints. The model formulae are based upon the physical understanding of the star, usually under the assumption of hydrostatic equilibrium. Extensive computer calculations are then run to determine the changing state of the star over time, yielding a table of data that can be used to determine the evolutionary track
In astronomy, the main sequence is a continuous and distinctive band of stars that appears on plots of stellar color versus brightness. These color-magnitude plots are known as Hertzsprung–Russell diagrams after their co-developers, Ejnar He ...
of the star across the Hertzsprung–Russell diagram
The Hertzsprung–Russell diagram, abbreviated as H–R diagram, HR diagram or HRD, is a scatter plot of stars showing the relationship between the stars' absolute magnitudes or luminosity, luminosities versus their stellar classifications or eff ...
, along with other evolving properties. Accurate models can be used to estimate the current age of a star by comparing its physical properties with those of stars along a matching evolutionary track.
See also
*
*
*
*
*
* (metallicity
In astronomy, metallicity is the abundance of elements present in an object that are heavier than hydrogen and helium. Most of the normal physical matter in the Universe is either hydrogen or helium, and astronomers use the word ''"metals"'' as a ...
)
* – Rotations slow as stars age
*
References
*
*
*
Further reading
Astronomy 606 (Stellar Structure and Evolution) lecture notes
Cole Miller, Department of Astronomy, University of Maryland
Astronomy 162, Unit 2 (The Structure & Evolution of Stars) lecture notes
Richard W. Pogge, Department of Astronomy, Ohio State University
External links
Stellar evolution simulator
Pisa Stellar Models
MESA stellar evolution codes (Modules for Experiments in Stellar Astrophysics)
"The Life of Stars"
BBC Radio 4 discussion with Paul Murdin, Janna Levin and Phil Charles (''In Our Time'', Mar. 27, 2003)
* Life cycle of a sta
{{DEFAULTSORT:Stellar Evolution
Stellar evolution,
Evolution
Concepts in astronomy
Articles containing video clips