Euclidean Closure
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a Euclidean field is an
ordered field In mathematics, an ordered field is a field together with a total ordering of its elements that is compatible with the field operations. Basic examples of ordered fields are the rational numbers and the real numbers, both with their standard ord ...
for which every non-negative element is a square: that is, in implies that for some in . The constructible numbers form a Euclidean field. It is the smallest Euclidean field, as every Euclidean field contains it as an ordered subfield. In other words, the constructible numbers form the Euclidean closure of the
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set of all ...
s.


Properties

* Every Euclidean field is an ordered
Pythagorean field In algebra, a Pythagorean field is a field in which every sum of two squares is a square: equivalently it has a Pythagoras number equal to 1. A Pythagorean extension of a field F is an extension obtained by adjoining an element \sqrt for some \la ...
, but the converse is not true.Martin (1998) p. 89 * If ''E''/''F'' is a finite
extension Extension, extend or extended may refer to: Mathematics Logic or set theory * Axiom of extensionality * Extensible cardinal * Extension (model theory) * Extension (proof theory) * Extension (predicate logic), the set of tuples of values that ...
, and ''E'' is Euclidean, then so is ''F''. This "going-down theorem" is a consequence of the
Diller–Dress theorem In algebra, a Pythagorean field is a field in which every sum of two squares is a square: equivalently it has a Pythagoras number equal to 1. A Pythagorean extension of a field F is an extension obtained by adjoining an element \sqrt for some \la ...
.Lam (2005) p.270


Examples

* The real constructible numbers, those (signed) lengths which can be constructed from a rational segment by ruler and compass constructions, form a Euclidean field.Martin (1998) pp. 35–36 Every
real closed field In mathematics, a real closed field is a field F that has the same first-order properties as the field of real numbers. Some examples are the field of real numbers, the field of real algebraic numbers, and the field of hyperreal numbers. Def ...
is a Euclidean field. The following examples are also real closed fields. * The
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s \mathbb with the usual operations and ordering form a Euclidean field. * The field of real
algebraic number In mathematics, an algebraic number is a number that is a root of a function, root of a non-zero polynomial in one variable with integer (or, equivalently, Rational number, rational) coefficients. For example, the golden ratio (1 + \sqrt)/2 is ...
s \mathbb\cap\mathbb is a Euclidean field. * The field of
hyperreal number In mathematics, hyperreal numbers are an extension of the real numbers to include certain classes of infinite and infinitesimal numbers. A hyperreal number x is said to be finite if, and only if, , x, for some integer n
s is a Euclidean field.


Counterexamples

* The
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set of all ...
s \mathbb Q with the usual operations and ordering do not form a Euclidean field. For example, 2 is not a square in \mathbb Q since the
square root of 2 The square root of 2 (approximately 1.4142) is the positive real number that, when multiplied by itself or squared, equals the number 2. It may be written as \sqrt or 2^. It is an algebraic number, and therefore not a transcendental number. Te ...
is
irrational Irrationality is cognition, thinking, talking, or acting without rationality. Irrationality often has a negative connotation, as thinking and actions that are less useful or more illogical than other more rational alternatives. The concept of ...
.Martin (1998) p. 35 By the going-down result above, no
algebraic number field In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension). Thus K is a ...
can be Euclidean. * The
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s \mathbb C do not form a Euclidean field since they cannot be given the structure of an ordered field.


Euclidean closure

The Euclidean closure of an ordered field is an extension of in the quadratic closure of which is maximal with respect to being an ordered field with an order extending that of .Efrat (2006) p. 177 It is also the smallest subfield of the
algebraic closure In mathematics, particularly abstract algebra, an algebraic closure of a field ''K'' is an algebraic extension of ''K'' that is algebraically closed. It is one of many closures in mathematics. Using Zorn's lemmaMcCarthy (1991) p.21Kaplansky ...
of that is a Euclidean field and is an ordered
extension Extension, extend or extended may refer to: Mathematics Logic or set theory * Axiom of extensionality * Extensible cardinal * Extension (model theory) * Extension (proof theory) * Extension (predicate logic), the set of tuples of values that ...
of .


References

* * *


External links

* {{PlanetMath, urlname=EuclideanField, title=Euclidean Field Field (mathematics)