
In
complex analysis
Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates Function (mathematics), functions of complex numbers. It is helpful in many branches of mathemati ...
, an essential singularity of a
function is a "severe"
singularity near which the function exhibits odd behavior.
The category ''essential singularity'' is a "left-over" or default group of
isolated singularities that are especially unmanageable: by definition they fit into neither of the other two categories of singularity that may be dealt with in some manner –
removable singularities and
poles. In practice some include non-isolated singularities too; those do not have a
residue.
Formal description
Consider an
open subset
In mathematics, open sets are a generalization of open intervals in the real line.
In a metric space (a set along with a distance defined between any two points), open sets are the sets that, with every point , contain all points that are suff ...
of the
complex plane
In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the -axis, called the real axis, is formed by the real numbers, and the -axis, called the imaginary axis, is formed by the ...
. Let
be an element of
, and
a
holomorphic function
In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space . The existence of a complex derivativ ...
. The point
is called an ''essential singularity'' of the function
if the singularity is neither a
pole nor a
removable singularity.
For example, the func