HOME

TheInfoList



OR:

In
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, the first stellation of the rhombic dodecahedron is a self-intersecting
polyhedron In geometry, a polyhedron (: polyhedra or polyhedrons; ) is a three-dimensional figure with flat polygonal Face (geometry), faces, straight Edge (geometry), edges and sharp corners or Vertex (geometry), vertices. The term "polyhedron" may refer ...
with 12 faces, each of which is a non-convex
Hexagon In geometry, a hexagon (from Greek , , meaning "six", and , , meaning "corner, angle") is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°. Regular hexagon A regular hexagon is de ...
. It is a
stellation In geometry, stellation is the process of extending a polygon in two dimensions, a polyhedron in three dimensions, or, in general, a polytope in ''n'' dimensions to form a new figure. Starting with an original figure, the process extends specific ...
of the
rhombic dodecahedron In geometry, the rhombic dodecahedron is a Polyhedron#Convex_polyhedra, convex polyhedron with 12 congruence (geometry), congruent rhombus, rhombic face (geometry), faces. It has 24 edge (geometry), edges, and 14 vertex (geometry), vertices of 2 ...
and has the same outer shell and the same visual appearance as two other shapes: a solid, Escher's solid, with 48 triangular faces, and a
polyhedral compound In geometry, a polyhedral compound is a figure that is composed of several polyhedra sharing a common Centroid, centre. They are the three-dimensional analogs of star polygon#Regular compounds, polygonal compounds such as the hexagram. The oute ...
of three flattened
octahedra In geometry, an octahedron (: octahedra or octahedrons) is any polyhedron with eight faces. One special case is the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex. Many types of i ...
with 24 overlapping triangular faces. Escher's solid can
tessellate A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric shapes, called ''tiles'', with no overlaps and no gaps. In mathematics, tessellation can be generalized to higher dimensions and a variety of ...
space to form the stellated rhombic dodecahedral honeycomb.


Stellation, solid, and compound

The first stellation of the rhombic dodecahedron has 12 faces, each of which is a non-convex hexagon. It is a
stellation In geometry, stellation is the process of extending a polygon in two dimensions, a polyhedron in three dimensions, or, in general, a polytope in ''n'' dimensions to form a new figure. Starting with an original figure, the process extends specific ...
of the
rhombic dodecahedron In geometry, the rhombic dodecahedron is a Polyhedron#Convex_polyhedra, convex polyhedron with 12 congruence (geometry), congruent rhombus, rhombic face (geometry), faces. It has 24 edge (geometry), edges, and 14 vertex (geometry), vertices of 2 ...
, meaning that each of its faces lies in the same plane as one of the
rhombus In plane Euclidean geometry, a rhombus (: rhombi or rhombuses) is a quadrilateral whose four sides all have the same length. Another name is equilateral quadrilateral, since equilateral means that all of its sides are equal in length. The rhom ...
faces of the rhombic dodecahedron, with each face containing the rhombus in the same plane, and that it has the same symmetries as the rhombic dodecahedron. It is the first stellation, meaning that no other self-intersecting polyhedron with the same face planes and the same symmetries has smaller faces. Extending the faces outwards even farther in the same planes leads to two more stellations, if the faces are required to be
simple polygon In geometry, a simple polygon is a polygon that does not Intersection (Euclidean geometry), intersect itself and has no holes. That is, it is a Piecewise linear curve, piecewise-linear Jordan curve consisting of finitely many line segments. The ...
s. For polyhedra formed only using faces in the same 12 planes and with the same symmetries, but with the faces allowed to become non-simple or with multiple faces in a single plane, additional possibilities arise. In particular, removing the inner rhombus from each hexagonal face of the stellation leaves four triangles, and the resulting system of 48 triangles forms a different non-convex polyhedron without self-intersections that forms the boundary of a solid shape, sometimes called Escher's solid. This shape appears in
M. C. Escher Maurits Cornelis Escher (; ; 17 June 1898 – 27 March 1972) was a Dutch graphic artist who made woodcuts, lithography, lithographs, and mezzotints, many of which were Mathematics and art, inspired by mathematics. Despite wide popular int ...
's works ''
Waterfall A waterfall is any point in a river or stream where water flows over a vertical drop or a series of steep drops. Waterfalls also occur where meltwater drops over the edge of a tabular iceberg or ice shelf. Waterfalls can be formed in seve ...
'' and in a study for ''
Stars A star is a luminous spheroid of plasma held together by self-gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night; their immense distances from Earth make them appear as fixed points of ...
'' (although ''Stars'' itself features a different shape, the
compound of three octahedra In mathematics, the compound of three octahedra or octahedron 3-compound is a polyhedral compound formed from three octahedron, regular octahedra, all sharing a common center but rotated with respect to each other. Although appearing earlier in th ...
). As the stellation and the solid have the same visual appearance, it is not possible to determine which of the two Escher intended to depict in ''Waterfall''. In ''Study for Stars'', Escher depicts the polyhedron in a skeletal form, and includes edges that are part of the skeletal form of Escher's solid but are not part of the stellation. (In the stellation, these line segments are formed by crossings of faces rather than edges.) However, an alternative interpretation for the same skeletal form is that it depicts a third shape with a similar appearance, the
polyhedral compound In geometry, a polyhedral compound is a figure that is composed of several polyhedra sharing a common Centroid, centre. They are the three-dimensional analogs of star polygon#Regular compounds, polygonal compounds such as the hexagram. The oute ...
of three flattened
octahedra In geometry, an octahedron (: octahedra or octahedrons) is any polyhedron with eight faces. One special case is the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex. Many types of i ...
with 24 overlapping triangular faces. The 48 triangular faces of the solid are isosceles; if the longest edge of these triangles is length s then the other two are \tfracs, the surface area of the solid is 12\sqrts^2 and the volume of the solid is 4s^3.


Vertices, edges, and faces

The vertices of the first stellation of the rhombic dodecahedron include the 12 vertices of the
cuboctahedron A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertex (geometry), vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edge (geometry), edges, each separating a tr ...
, together with eight additional vertices (the degree-3 vertices of the rhombic dodecahedron). Escher's solid has six additional vertices, at the center points of the square faces of the cuboctahedron (the degree-4 vertices of the rhombic dodecahedron). In the first stellation of the rhombic dodecahedron, these six points are not vertices, but are instead the midpoints of pairs of edges that cross at right angles at these points. The first stellation of the rhombic dodecahedron has 12 hexagonal faces, 36 edges, and 20 vertices, yielding an
Euler characteristic In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space's ...
of 20 − 36 + 12 = −4. Escher's solid instead has 48 triangular faces, 72 edges, and 26 vertices, yielding an
Euler characteristic In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space's ...
of 26 − 72 + 48 = 2.


Tessellation

Escher's solid can
tessellate A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric shapes, called ''tiles'', with no overlaps and no gaps. In mathematics, tessellation can be generalized to higher dimensions and a variety of ...
space in the stellated rhombic dodecahedral honeycomb. Six solids meet at each vertex. This honeycomb is
cell-transitive In geometry, a tessellation of dimension (a plane tiling) or higher, or a polytope of dimension (a polyhedron) or higher, is isohedral or face-transitive if all its faces are the same. More specifically, all faces must be not merely congruen ...
,
edge-transitive In geometry, a polytope (for example, a polygon or a polyhedron) or a Tessellation, tiling is isotoxal () or edge-transitive if its Symmetry, symmetries act Transitive group action, transitively on its Edge (geometry), edges. Informally, this mea ...
and
vertex-transitive In geometry, a polytope (e.g. a polygon or polyhedron) or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of face i ...
. The
Yoshimoto Cube The Yoshimoto Cube is a polyhedral mechanical puzzle toy invented in 1971 by , who discovered that two stellated rhombic dodecahedra could be pieced together into a cube when he was finding different ways he could split a cube equally in half. Yo ...
, a
dissection puzzle A dissection puzzle, also called a transformation puzzle or Richter puzzle, is a tiling puzzle where a set of pieces can be assembled in different ways to produce two or more distinct geometric shapes. The creation of new dissection puzzles is ...
between a cube and two copies of Escher's solid, is closely related to this tessellation.


References


External links

* {{mathworld , urlname = EschersSolid, title = First stellation of rhombic dodecahedron * George Hart
Stellations
Stellation diagrams M. C. Escher Space-filling_polyhedra