HOME

TheInfoList



OR:

In the
mathematical Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
field of
graph theory In mathematics, graph theory is the study of '' graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are conn ...
, the Errera graph is a graph with 17 vertices and 45
edge Edge or EDGE may refer to: Technology Computing * Edge computing, a network load-balancing system * Edge device, an entry point to a computer network * Adobe Edge, a graphical development application * Microsoft Edge, a web browser developed b ...
s. Alfred Errera published it in 1921 as a counterexample to Kempe's erroneous proof of the
four color theorem In mathematics, the four color theorem, or the four color map theorem, states that no more than four colors are required to color the regions of any map so that no two adjacent regions have the same color. ''Adjacent'' means that two regions sh ...
; it was named after Errera by .


Properties

The Errera graph is planar and has
chromatic number In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices o ...
4,
chromatic index In graph theory, an edge coloring of a graph is an assignment of "colors" to the edges of the graph so that no two incident edges have the same color. For example, the figure to the right shows an edge coloring of a graph by the colors red, blue ...
6,
radius In classical geometry, a radius ( : radii) of a circle or sphere is any of the line segments from its center to its perimeter, and in more modern usage, it is also their length. The name comes from the latin ''radius'', meaning ray but also the ...
3,
diameter In geometry, a diameter of a circle is any straight line segment that passes through the center of the circle and whose endpoints lie on the circle. It can also be defined as the longest chord of the circle. Both definitions are also valid fo ...
4 and girth 3. All its vertices are of degree 5 or 6 and it is a 5- vertex-connected graph and a 5- edge-connected graph. The Errera graph is not a
vertex-transitive graph In the mathematical field of graph theory, a vertex-transitive graph is a graph in which, given any two vertices and of , there is some automorphism :f : G \to G\ such that :f(v_1) = v_2.\ In other words, a graph is vertex-transitive ...
and its full automorphism group is isomorphic to the
dihedral group In mathematics, a dihedral group is the group of symmetries of a regular polygon, which includes rotations and reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory, ...
of order 20, the group of symmetries of a
decagon In geometry, a decagon (from the Greek δέκα ''déka'' and γωνία ''gonía,'' "ten angles") is a ten-sided polygon or 10-gon.. The total sum of the interior angles of a simple decagon is 1440°. A self-intersecting ''regular decagon'' i ...
, including both rotations and reflections. The
characteristic polynomial In linear algebra, the characteristic polynomial of a square matrix is a polynomial which is invariant under matrix similarity and has the eigenvalues as roots. It has the determinant and the trace of the matrix among its coefficients. The ...
of the Errera graph is -(x^2-2 x-5) (x^2+x-1)^2 (x^3-4 x^2-9 x+10) (x^4+2 x^3-7 x^2-18 x-9)^2.


Application to the four color theorem

The
four color theorem In mathematics, the four color theorem, or the four color map theorem, states that no more than four colors are required to color the regions of any map so that no two adjacent regions have the same color. ''Adjacent'' means that two regions sh ...
states that the vertices of every planar graph can be colored with four colors, so that no two adjacent vertices have equal colors. An erroneous proof was published in 1879 by
Alfred Kempe Sir Alfred Bray Kempe FRS (6 July 1849 – 21 April 1922) was a mathematician best known for his work on linkages and the four colour theorem. Biography Kempe was the son of the Rector of St James's Church, Piccadilly, the Rev. John Edward ...
, but it was discovered to be erroneous by 1890. The four color theorem was not given a valid proof until 1976. Kempe's proof can be translated into an
algorithm In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing ...
to color planar graphs, which is also erroneous. Counterexamples to his proof were found in 1890 and 1896 (the Poussin graph), and later, the Fritsch graph and Soifer graph provided two smaller counterexamples. However, until the work of Errera, these counterexamples did not show that the whole coloring algorithm fails. Rather, they assumed that all but one vertex of the graph had already been colored, and showed that Kempe's method (which purportedly would modify the coloring to extend it to the whole graphs) failed in those precolored instances. The Errera graph, on the other hand, provides a counterexample to Kempe's entire method. When this method is run on the Errera graph, starting with no vertices colored, it can fail to find a valid coloring for the whole graph. Additionally, unlike the Poussin graph, all vertices in the Errera graph have degree five or more. Therefore, on this graph, it is impossible to avoid the problematic cases of Kempe's method by choosing lower-degree vertices. The figure shows an example of how Kempe's proof can fail for this graph. In the figure, the adjacencies between regions of this map form the Errera graph, partially four-colored with the outer region uncolored. Kempe's erroneous proof follows the idea of extending partial colorings such as this one by recoloring
Kempe chain Kempe may refer to: * Kempe baronets, a title in the Baronetage of England * Kempe chain, part of the four-colour theorem * Kempe Fjord, King Christian X Land, Greenland * Kempe Glacier, Antarctica * Kempe Hill, former name of Camp Hill, West ...
s, connected subgraphs that have only two colors. Any such chain can be recolored, preserving the validity of the coloring, by swapping its two colors on all vertices of the chain. Kempe's proof has different cases depending on whether the next vertex to be colored has three, four, or five neighbors and on how those neighbors are colored. In the case shown, the vertex to be colored next is the one corresponding to the outer region of the map. This region cannot be colored directly, because it already has neighbors of all four different colors. The blue and yellow neighbors are connected by a single Kempe chain (shown by the dashed yellow lines in the image), preventing a swap from making them both blue or both yellow and freeing a color. Similarly, the blue and green neighbors are connected by another Kempe chain (the dashed green lines). In such a case, Kempe's proof would try to simultaneously swap the colors on two Kempe chains, the left red-yellow chain and the right red-green chain (dashed red lines). The blue-green chain blocks the left red-yellow chain from reaching the right side of the graph, and the blue-yellow chain blocks the right red-green chain from reaching the left, so it would seem that simultaneously swapping the colors on these two chains is a safe operation. But because the blue-yellow and blue-green chains cross each other rather than staying separated, there is a region in the middle of the figure where the red-yellow and red-green chains can meet. When these two chains meet in the middle, the simultaneous swap causes adjacent yellow and green vertices in this middle area (such as the vertices represented by the upper yellow and green regions in the figure) to both become red, producing an invalid coloring.


Applications in chemistry

Chemical graph theory Chemical graph theory is the topology branch of mathematical chemistry which applies graph theory to mathematical modelling of chemical phenomena. The pioneers of chemical graph theory are Alexandru Balaban, Ante Graovac, Iván Gutman, Haruo H ...
concerns the graph-theoretic structure of
molecule A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bio ...
s and other clusters of atoms. Both the Errera graph itself and its
dual graph In the mathematical discipline of graph theory, the dual graph of a plane graph is a graph that has a vertex for each face of . The dual graph has an edge for each pair of faces in that are separated from each other by an edge, and a self-loo ...
are relevant in this context. Atoms of
metal A metal (from Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typi ...
s such as
gold Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile ...
can form
cluster may refer to: Science and technology Astronomy * Cluster (spacecraft), constellation of four European Space Agency spacecraft * Asteroid cluster, a small asteroid family * Cluster II (spacecraft), a European Space Agency mission to study th ...
s in which a central atom is surrounded by twelve more atoms, in the pattern of an
icosahedron In geometry, an icosahedron ( or ) is a polyhedron with 20 faces. The name comes and . The plural can be either "icosahedra" () or "icosahedrons". There are infinitely many non- similar shapes of icosahedra, some of them being more symmetric ...
. Another, larger, type of cluster can be formed by coalescing two of these icosahedral clusters, so that the central atom of each cluster becomes one of the boundary atoms for the other cluster. The resulting cluster of 19 atoms has two interior atoms (the centers of the two icosahedra) with 17 atoms in the outer shell in the pattern of the Errera graph. The
dual graph In the mathematical discipline of graph theory, the dual graph of a plane graph is a graph that has a vertex for each face of . The dual graph has an edge for each pair of faces in that are separated from each other by an edge, and a self-loo ...
of the Errera graph is a
fullerene A fullerene is an allotrope of carbon whose molecule consists of carbon atoms connected by single and double bonds so as to form a closed or partially closed mesh, with fused rings of five to seven atoms. The molecule may be a hollow sphere, ...
with 30 vertices, designated in the chemistry literature as C30(D5''h'') or F30(D5''h'') to indicate its symmetry and distinguish it from other 30-vertex fullerenes. This shape also plays a central role in the construction of higher-dimensional fullerenes.


References


External links

*{{MathWorld, urlname=ErreraGraph, title=Errera graph Individual graphs Planar graphs Fullerenes