The Erdős–Turán conjecture is an old unsolved problem in
additive number theory
Additive number theory is the subfield of number theory concerning the study of subsets of integers and their behavior under addition. More abstractly, the field of additive number theory includes the study of abelian groups and commutative semigro ...
(not to be confused with
Erdős conjecture on arithmetic progressions) posed by
Paul Erdős
Paul Erdős ( ; 26March 191320September 1996) was a Hungarian mathematician. He was one of the most prolific mathematicians and producers of mathematical conjectures of the 20th century. pursued and proposed problems in discrete mathematics, g ...
and
Pál Turán
Pál Turán (; 18 August 1910 – 26 September 1976) also known as Paul Turán, was a Hungarian mathematician who worked primarily in extremal combinatorics.
In 1940, because of his Jewish origins, he was arrested by History of the Jews in Hun ...
in 1941.
It concerns
additive bases, subsets of natural numbers with the property that every natural number can be represented as the sum of a bounded number of elements from the basis. Roughly, it states that the number of representations of this type cannot also be bounded.
Background and formulation
The question concerns
subset
In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they a ...
s of the
natural number
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
s, typically denoted by
, called
additive bases. A subset
is called an (asymptotic) additive basis of finite order if there is some positive
integer
An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
such that every sufficiently large natural number
can be written as the sum of at most
elements of
. For example, the natural numbers are themselves an additive basis of order 1, since every natural number is trivially a sum of at most one natural number.
Lagrange's four-square theorem
Lagrange's four-square theorem, also known as Bachet's conjecture, states that every natural number, nonnegative integer can be represented as a sum of four non-negative integer square number, squares. That is, the squares form an additive basi ...
says that the set of positive
square number
In mathematics, a square number or perfect square is an integer that is the square (algebra), square of an integer; in other words, it is the multiplication, product of some integer with itself. For example, 9 is a square number, since it equals ...
s is an additive basis of order 4. Another highly non-trivial and celebrated result along these lines is
Vinogradov's theorem
In number theory, Vinogradov's theorem is a result which implies that any sufficiently large odd integer can be written as a sum of three prime numbers. It is a weaker form of Goldbach's weak conjecture, which would imply the existence of such a re ...
.
One is naturally inclined to ask whether these results are optimal. It turns out that
Lagrange's four-square theorem
Lagrange's four-square theorem, also known as Bachet's conjecture, states that every natural number, nonnegative integer can be represented as a sum of four non-negative integer square number, squares. That is, the squares form an additive basi ...
cannot be improved, as there are infinitely many positive integers which are not the sum of three squares. This is because no positive integer which is the sum of three squares can leave a remainder of 7 when divided by 8. However, one should perhaps expect that a set
which is about as sparse as the squares (meaning that in a given
interval