Elongated Triangular Cupola
   HOME

TheInfoList



OR:

In
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, the elongated triangular cupola is a polyhedron constructed from a
hexagonal prism In geometry, the hexagonal prism is a Prism (geometry), prism with hexagonal base. Prisms are polyhedrons; this polyhedron has 8 face (geometry), faces, 18 Edge (geometry), edges, and 12 vertex (geometry), vertices.. As a semiregular polyhedro ...
by attaching a
triangular cupola In geometry, the triangular cupola is the cupola with hexagon as its base and triangle as its top. If the edges are equal in length, the triangular cupola is the Johnson solid. It can be seen as half a cuboctahedron. The triangular cupola can b ...
. It is an example of a
Johnson solid In geometry, a Johnson solid, sometimes also known as a Johnson–Zalgaller solid, is a convex polyhedron whose faces are regular polygons. They are sometimes defined to exclude the uniform polyhedrons. There are ninety-two Solid geometry, s ...
.


Construction

The elongated triangular cupola is constructed from a
hexagonal prism In geometry, the hexagonal prism is a Prism (geometry), prism with hexagonal base. Prisms are polyhedrons; this polyhedron has 8 face (geometry), faces, 18 Edge (geometry), edges, and 12 vertex (geometry), vertices.. As a semiregular polyhedro ...
by attaching a
triangular cupola In geometry, the triangular cupola is the cupola with hexagon as its base and triangle as its top. If the edges are equal in length, the triangular cupola is the Johnson solid. It can be seen as half a cuboctahedron. The triangular cupola can b ...
onto one of its bases, a process known as the elongation. This cupola covers the hexagonal face so that the resulting polyhedron has four
equilateral triangle An equilateral triangle is a triangle in which all three sides have the same length, and all three angles are equal. Because of these properties, the equilateral triangle is a regular polygon, occasionally known as the regular triangle. It is the ...
s, nine
square In geometry, a square is a regular polygon, regular quadrilateral. It has four straight sides of equal length and four equal angles. Squares are special cases of rectangles, which have four equal angles, and of rhombuses, which have four equal si ...
s, and one
regular hexagon In geometry, a hexagon (from Greek , , meaning "six", and , , meaning "corner, angle") is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°. Regular hexagon A regular hexagon is de ...
. A
convex Convex or convexity may refer to: Science and technology * Convex lens, in optics Mathematics * Convex set, containing the whole line segment that joins points ** Convex polygon, a polygon which encloses a convex set of points ** Convex polytop ...
polyhedron in which all of the faces are
regular polygon In Euclidean geometry, a regular polygon is a polygon that is Equiangular polygon, direct equiangular (all angles are equal in measure) and Equilateral polygon, equilateral (all sides have the same length). Regular polygons may be either ''convex ...
s is the
Johnson solid In geometry, a Johnson solid, sometimes also known as a Johnson–Zalgaller solid, is a convex polyhedron whose faces are regular polygons. They are sometimes defined to exclude the uniform polyhedrons. There are ninety-two Solid geometry, s ...
. The elongated triangular cupola is one of them, enumerated as the eighteenth Johnson solid J_ .


Properties

The surface area of an elongated triangular cupola A is the sum of all polygonal face's area. The volume of an elongated triangular cupola can be ascertained by dissecting it into a cupola and a hexagonal prism, after which summing their volume. Given the edge length a , its surface and volume can be formulated as: \begin A &= \fraca^2 &\approx 13.330a^2, \\ V &= \fraca^3 &\approx 3.777a^3. \end It has the three-dimensional same symmetry as the triangular cupola, the
cyclic group In abstract algebra, a cyclic group or monogenous group is a Group (mathematics), group, denoted C_n (also frequently \Z_n or Z_n, not to be confused with the commutative ring of P-adic number, -adic numbers), that is Generating set of a group, ge ...
C_ of order 6. Its dihedral angle can be calculated by adding the angle of a triangular cupola and a hexagonal prism: * the dihedral angle of an elongated triangular cupola between square-to-triangle is that of a triangular cupola between those: 125.3°; * the dihedral angle of an elongated triangular cupola between two adjacent squares is that of a hexagonal prism, the internal angle of its base 120°; * the dihedral angle of a hexagonal prism between square-to-hexagon is 90°, that of a triangular cupola between square-to-hexagon is 54.7°, and that of a triangular cupola between triangle-to-hexagonal is an 70.5°. Therefore, the elongated triangular cupola between square-to-square and triangle-to-square, on the edge where a triangular cupola is attached to a hexagonal prism, is 90° + 54.7° = 144.7° and 90° + 70.5° = 166.5° respectively.


References


External links

* Johnson solids {{Johnson solids navigator