HOME

TheInfoList



OR:

In
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles a ...
and
statistical field theory Statistics (from German: ''Statistik'', "description of a state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industria ...
, Elitzur's theorem states that in
gauge theories In physics, a gauge theory is a type of field theory in which the Lagrangian (and hence the dynamics of the system itself) does not change (is invariant) under local transformations according to certain smooth families of operations (Lie groups ...
, the only operators that can have non-vanishing expectation values are ones that are invariant under local gauge transformations. An important implication is that gauge symmetry cannot be spontaneously broken. The theorem was proved in 1975 by Shmuel Elitzur in
lattice field theory In physics, lattice field theory is the study of lattice models of quantum field theory, that is, of field theory on a space or spacetime that has been discretised onto a lattice. Details Although most lattice field theories are not exactly s ...
, although the same result is expected to hold in the continuum. The theorem shows that the naive interpretation of the
Higgs mechanism In the Standard Model of particle physics, the Higgs mechanism is essential to explain the generation mechanism of the property "mass" for gauge bosons. Without the Higgs mechanism, all bosons (one of the two classes of particles, the other bei ...
as the spontaneous symmetry breaking of a gauge symmetry is incorrect, although the phenomenon can be reformulated entirely in terms of gauge invariant quantities in what is known as the Fröhlich–Morchio–Strocchi mechanism.


Theory

A field theory admits numerous types of
symmetries Symmetry (from grc, συμμετρία "agreement in dimensions, due proportion, arrangement") in everyday language refers to a sense of harmonious and beautiful proportion and balance. In mathematics, "symmetry" has a more precise definit ...
, with the two most common ones being global and local symmetries. Global symmetries are fields transformations acting the same way everywhere while local symmetries act on fields in a position dependent way. The latter correspond to redundancies in the description of the system. This is a consequence of
Noether's second theorem In mathematics and theoretical physics, Noether's second theorem relates symmetries of an action functional with a system of differential equations. :Translated in The action ''S'' of a physical system is an integral of a so-called Lagrangian ...
which shows that each gauge symmetry degree of freedom corresponds to a relation among the
Euler–Lagrange equation In the calculus of variations and classical mechanics, the Euler–Lagrange equations are a system of second-order ordinary differential equations whose solutions are stationary points of the given action functional. The equations were discovered ...
s, making the system underdetermined. Underdeterminacy requires
gauge fixing In the physics of gauge theory, gauge theories, gauge fixing (also called choosing a gauge) denotes a mathematical procedure for coping with redundant Degrees of freedom (physics and chemistry), degrees of freedom in field (physics), field variab ...
of the non-propagating components so that the
equations of motion In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time.''Encyclopaedia of Physics'' (second Edition), R.G. Lerner, G.L. Trigg, VHC Publishers, 1991, ISBN (Ve ...
admits a unique solution. Spontaneous symmetry breaking occurs when the
action Action may refer to: * Action (narrative), a literary mode * Action fiction, a type of genre fiction * Action game, a genre of video game Film * Action film, a genre of film * ''Action'' (1921 film), a film by John Ford * ''Action'' (1980 fil ...
of a theory has a symmetry but the
vacuum state In quantum field theory, the quantum vacuum state (also called the quantum vacuum or vacuum state) is the quantum state with the lowest possible energy. Generally, it contains no physical particles. The word zero-point field is sometimes used a ...
violates this symmetry. In that case there will exist a
local operator Local may refer to: Geography and transportation * Local (train), a train serving local traffic demand * Local, Missouri, a community in the United States * Local government, a form of public administration, usually the lowest tier of administrat ...
that is non-invariant under the symmetry giving it a nonzero vacuum expectation value. Such non-invariant local operators always have vanishing vacuum expectation values for finite size systems prohibiting spontaneous symmetry breaking. This occurs because over large timescales, finite systems always transition between all its possible ground states, averaging away the
expectation value In probability theory, the expected value (also called expectation, expectancy, mathematical expectation, mean, average, or first moment) is a generalization of the weighted average. Informally, the expected value is the arithmetic mean of a l ...
to zero. While spontaneous symmetry breaking can occur for global symmetries, Elitzur's theorem states that the same is not the case for gauge symmetries; all vacuum expectation values of gauge non-invariant operators are vanishing, even in systems of infinite size. On the lattice follows from the fact that integrating gauge non-invariant
observable In physics, an observable is a physical quantity that can be measured. Examples include position and momentum. In systems governed by classical mechanics, it is a real-valued "function" on the set of all possible system states. In quantum phys ...
s over a group measure always yields zero for compact gauge groups. Positivity of the measure and gauge invariance are sufficient to prove the theorem. This is also an explanation for why gauge symmetries are mere redundancies in lattice field theories, where the equations of motion need not define
well-posed The mathematical term well-posed problem stems from a definition given by 20th-century French mathematician Jacques Hadamard. He believed that mathematical models of physical phenomena should have the properties that: # a solution exists, # the s ...
problem as they do not need to be solved. Instead, Elitzur's theorem shows that any observable that is not invariant under the symmetry has a vanishing expectation value making it unobservable and thus redundant. Showing that a system admits spontaneous symmetry breaking requires introducing a weak external source field that breaks the symmetry and gives rise to a preferred ground state. The system is then taken to the
thermodynamic limit In statistical mechanics, the thermodynamic limit or macroscopic limit, of a system is the limit for a large number of particles (e.g., atoms or molecules) where the volume is taken to grow in proportion with the number of particles.S.J. Blunde ...
after which the external source field is switched off. If the vacuum expectation value of symmetry non-invariant operators is nonzero in this limit then there is spontaneous symmetry breaking. Physically it means that the system never leaves the original ground state into which it was placed through the external field. For global symmetries this occurs because the energy barrier between the various ground states is proportional to the volume, so in the thermodynamic limit this diverges, locking the system into the ground state. Local symmetries get around this construction because the energy barrier between two ground states depends only on local features so transitions to different gauge related ground states can occur locally and does not require the field to change everywhere at the same time as it does for global symmetries.


Limitations and implications

There are a number of limitations to the theorem. In particular, spontaneous symmetry breaking of a gauge symmetry is allowed in a system with infinite spatial dimensions or a symmetry with an infinite number of variables, since in these cases there are infinite energy barriers between gauge related configurations. The theorem also does not apply to residual gauge degrees of freedom nor
large gauge transformation Given a topological space ''M'', a topological group ''G'' and a principal G-bundle over ''M'', a global section of that principal bundle is a gauge fixing and the process of replacing one section by another is a gauge transformation. If a gauge ...
s, which can in principle be spontaneously broken. Furthermore, all current proofs rely on a lattice field theory formulation so they may be invalid in a genuine continuum field theory. It is therefore in principle plausible that there may exist exotic continuum theories for which gauge symmetries can be spontaneously broken, although such a scenario remains unlikely due to the absence of any known examples. Landau's classification of phases uses expectation values of local operators to determine the
phase Phase or phases may refer to: Science *State of matter, or phase, one of the distinct forms in which matter can exist *Phase (matter), a region of space throughout which all physical properties are essentially uniform *Phase space, a mathematica ...
of the system. However, Elitzur's theorem shows that this approach is inadmissible in certain systems such as Yang–Mills theories for which no local operator can act as an order operator for
confinement Confinement may refer to * With respect to humans: ** An old-fashioned or archaic synonym for childbirth ** Postpartum confinement (or postnatal confinement), a system of recovery after childbirth, involving rest and special foods ** Civil confin ...
. Instead, to get around the theorem requires constructing nonlocal gauge invariant operators, whose expectation values need not be zero. The most common ones are
Wilson loop In quantum field theory, Wilson loops are gauge invariant operators arising from the parallel transport of gauge variables around closed loops. They encode all gauge information of the theory, allowing for the construction of loop representati ...
s and their thermal equivalents,
Polyakov loop In quantum field theory, the Polyakov loop is the thermal analogue of the Wilson loop, acting as an order parameter for confinement in pure gauge theories at nonzero temperatures. In particular, it is a Wilson loop that winds around the compacti ...
s. Another nonlocal operator that acts as a order operator is the
't Hooft loop In quantum field theory, the 't Hooft loop is a magnetic analogue of the Wilson loop for which spatial loops give rise to thin loops of magnetic flux associated with magnetic vortices. They play the role of a disorder parameter for the Higgs ph ...
. Since gauge symmetries cannot be spontaneously broken, this calls into question the validity of the Higgs mechanism. In the usual presentation, the Higgs field has a
potential Potential generally refers to a currently unrealized ability. The term is used in a wide variety of fields, from physics to the social sciences to indicate things that are in a state where they are able to change in ways ranging from the simple r ...
that appears to give the Higgs field a non-vanishing vacuum expectation value. However, this is merely a consequence of imposing a gauge fixing, usually the unitary gauge. Any value of the vacuum expectation value can be acquired by an appropriate gauge fixing choice. Calculating the expectation value in a gauge invariant way always gives zero, in agreement with Elitzur's theorem. The Higgs mechanism can however be reformulated entirely in a gauge invariant way in what is known as the Fröhlich–Morchio–Strocchi mechanism which does not involve spontaneous symmetry breaking of any symmetry. For non-abelian gauge groups that have a \text(2)
subgroup In group theory, a branch of mathematics, given a group ''G'' under a binary operation ∗, a subset ''H'' of ''G'' is called a subgroup of ''G'' if ''H'' also forms a group under the operation ∗. More precisely, ''H'' is a subgrou ...
, this mechanism agrees with the Higgs mechanism, but for other gauge groups there can appear discrepancies between the two approaches. Elitzur's theorem can also be generalized to a larger notion of local symmetries where in a D-dimensional space, there can be symmetries that act uniformly on a d-dimensional
hyperplanes In geometry, a hyperplane is a subspace whose dimension is one less than that of its ''ambient space''. For example, if a space is 3-dimensional then its hyperplanes are the 2-dimensional planes, while if the space is 2-dimensional, its hyperp ...
. In this view, global symmetries act on D-dimensional hyperplanes while local symmetries act on 0-dimensional ones. The generalized Elitzur's theorem then provides bounds on the vacuum expectation values of operators that are non-invariant under such d-dimensional symmetries. This theorem has numerous applications in condensed matter systems where such symmetries appear.


See also

*
Mermin–Wagner theorem In quantum field theory and statistical mechanics, the Mermin–Wagner theorem (also known as Mermin–Wagner–Hohenberg theorem, Mermin–Wagner–Berezinskii theorem, or Coleman theorem) states that continuous symmetries cannot be spontaneous ...


References


External links


Notes on lattice gauge theory by A. Muramatsu
{{DEFAULTSORT:Elitzur's Theorem Gauge theories Lattice field theory Symmetry Theorems in quantum mechanics Statistical mechanics theorems