HOME

TheInfoList



OR:

An exotic star is a hypothetical
compact star In astronomy, the term compact object (or compact star) refers collectively to white dwarfs, neutron stars, and black holes. It could also include exotic stars if such hypothetical, dense bodies are confirmed to exist. All compact objects have a ...
composed of
exotic matter There are several proposed types of exotic matter: * Hypothetical particles and states of matter that have not yet been encountered, but whose properties would be within the realm of mainstream physics if found to exist. * Several particles who ...
(something not made of
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s,
proton A proton is a stable subatomic particle, symbol , Hydron (chemistry), H+, or 1H+ with a positive electric charge of +1 ''e'' (elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an e ...
s,
neutron The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
s, or
muon A muon ( ; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with an electric charge of −1 '' e'' and a spin of  ''ħ'', but with a much greater mass. It is classified as a ...
s), and balanced against
gravitational collapse Gravitational collapse is the contraction of an astronomical object due to the influence of its own gravity, which tends to draw matter inward toward the center of gravity. Gravitational collapse is a fundamental mechanism for structure formati ...
by
degeneracy pressure In astrophysics and condensed matter physics, electron degeneracy pressure is a quantum mechanical effect critical to understanding the stability of white dwarf stars and metal solids. It is a manifestation of the more general phenomenon of quan ...
or other quantum properties. Types of exotic stars include * quark stars (composed of
quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nucleus, atomic nuclei ...
s) *
strange star A strange star, also called a strange quark star, is a hypothetical compact astronomical object, a quark star made of strange quark matter. Strange stars might exist without regard to the Bodmer–Witten assumption of stability at near-zero te ...
s (composed of strange quark matter, a condensate of up, down, and
strange quark The strange quark or s quark (from its symbol, s) is the third lightest of all quarks, a type of elementary particle. Strange quarks are found in subatomic particles called hadrons. Examples of hadrons containing strange quarks include kaons (), ...
s) * s (speculative material composed of
preon In particle physics, preons are hypothetical point particles, conceived of as sub-components of quarks and leptons. The word was coined by Jogesh Pati and Abdus Salam, in 1974. Interest in preon models peaked in the 1980s but has slowed, as t ...
s, which are hypothetical particles and "building blocks" of quarks and leptons, should quarks be decomposable into component sub-particles). Of the various types of exotic star proposed, the most well evidenced and understood is the quark star, although its existence is not confirmed.


Quark stars and strange stars

A quark star is a hypothesized object that results from the decomposition of
neutron The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
s into their constituent up and down
quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nucleus, atomic nuclei ...
s under gravitational pressure. It is expected to be smaller and denser than a
neutron star A neutron star is the gravitationally collapsed Stellar core, core of a massive supergiant star. It results from the supernova explosion of a stellar evolution#Massive star, massive star—combined with gravitational collapse—that compresses ...
, and may survive in this new state indefinitely, if no extra mass is added. Effectively, it is a single, very large
hadron In particle physics, a hadron is a composite subatomic particle made of two or more quarks held together by the strong nuclear force. Pronounced , the name is derived . They are analogous to molecules, which are held together by the electri ...
. Quark stars that contain
strange matter Strange matter (or strange quark matter) is quark matter containing strange quarks. In extreme environments, strange matter is hypothesized to occur in the core of neutron stars, or, more speculatively, as isolated droplets that may vary in siz ...
are called strange stars. Based on observations released by the
Chandra X-Ray Observatory The Chandra X-ray Observatory (CXO), previously known as the Advanced X-ray Astrophysics Facility (AXAF), is a Flagship-class space telescope launched aboard the during STS-93 by NASA on July 23, 1999. Chandra is sensitive to X-ray sources ...
on 10 April 2002, two objects, named RX J1856.5−3754 and were suggested as quark star candidates. The former appeared to be much smaller and the latter much colder than expected for a neutron star, suggesting that they were composed of material denser than ''
neutronium Neutronium (or neutrium, neutrite, or element zero) is a hypothetical substance made purely of neutrons. The word was coined by scientist Andreas von Antropoff in 1926 (before the 1932 discovery of the neutron) for the hypothetical "element of ...
''. However, these observations were met with skepticism by researchers who said the results were not conclusive. After further analysis, RX J1856.5−3754 was excluded from the list of quark star candidates.


Electroweak stars

An electroweak star is a hypothetical type of exotic star in which the gravitational collapse of the star is prevented by
radiation pressure Radiation pressure (also known as light pressure) is mechanical pressure exerted upon a surface due to the exchange of momentum between the object and the electromagnetic field. This includes the momentum of light or electromagnetic radiation of ...
resulting from electroweak burning; that is, the energy released by the conversion of
quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nucleus, atomic nuclei ...
s into
lepton In particle physics, a lepton is an elementary particle of half-integer spin (Spin (physics), spin ) that does not undergo strong interactions. Two main classes of leptons exist: electric charge, charged leptons (also known as the electron-li ...
s through the electroweak force. This proposed process might occur in a volume at the star's core approximately the size of an
apple An apple is a round, edible fruit produced by an apple tree (''Malus'' spp.). Fruit trees of the orchard or domestic apple (''Malus domestica''), the most widely grown in the genus, are agriculture, cultivated worldwide. The tree originated ...
, containing about two Earth masses, and reaching temperatures on the order of 1015  K (1 PK). Electroweak stars could be identified through the equal number of neutrinos emitted of all three generations, taking into account
neutrino oscillation Neutrino oscillation is a quantum mechanics, quantum mechanical phenomenon in which a neutrino created with a specific lepton lepton number, family number ("lepton flavor": electron, muon, or tau lepton, tau) can later be Quantum measurement, mea ...
.


Preon stars

A preon star is a proposed type of compact star made of
preon In particle physics, preons are hypothetical point particles, conceived of as sub-components of quarks and leptons. The word was coined by Jogesh Pati and Abdus Salam, in 1974. Interest in preon models peaked in the 1980s but has slowed, as t ...
s, a group of hypothetical subatomic particles. Preon stars would be expected to have huge densities, exceeding  kg/m3. They may have greater densities than quark stars, and they would be heavier but smaller than
white dwarf A white dwarf is a Compact star, stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very density, dense: in an Earth sized volume, it packs a mass that is comparable to the Sun. No nuclear fusion takes place i ...
s and neutron stars. Preon stars could originate from
supernova A supernova (: supernovae or supernovas) is a powerful and luminous explosion of a star. A supernova occurs during the last stellar evolution, evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion ...
explosions or the
Big Bang The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models based on the Big Bang concept explain a broad range of phenomena, including th ...
. Such objects could be detected in principle through
gravitational lensing A gravitational lens is matter, such as a galaxy cluster, cluster of galaxies or a point particle, that bends light from a distant source as it travels toward an observer. The amount of gravitational lensing is described by Albert Einstein's Ge ...
of
gamma ray A gamma ray, also known as gamma radiation (symbol ), is a penetrating form of electromagnetic radiation arising from high energy interactions like the radioactive decay of atomic nuclei or astronomical events like solar flares. It consists o ...
s. Preon stars are a potential candidate for
dark matter In astronomy, dark matter is an invisible and hypothetical form of matter that does not interact with light or other electromagnetic radiation. Dark matter is implied by gravity, gravitational effects that cannot be explained by general relat ...
. However, current observations from
particle accelerator A particle accelerator is a machine that uses electromagnetic fields to propel electric charge, charged particles to very high speeds and energies to contain them in well-defined particle beam, beams. Small accelerators are used for fundamental ...
s speak against the existence of preons, or at least do not prioritize their investigation, since the only particle detector presently able to explore very high energies (the
Large Hadron Collider The Large Hadron Collider (LHC) is the world's largest and highest-energy particle accelerator. It was built by the CERN, European Organization for Nuclear Research (CERN) between 1998 and 2008, in collaboration with over 10,000 scientists, ...
) is not designed specifically for this and its research program is directed towards other areas, such as studying the
Higgs boson The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the excited state, quantum excitation of the Higgs field, one of the field (physics), fields in particl ...
,
quark–gluon plasma Quark–gluon plasma (QGP or quark soup) is an interacting localized assembly of quarks and gluons at Thermodynamic equilibrium#Local and global equilibrium, thermal (local kinetic) and (close to) chemical (abundance) equilibrium. The word ''plasm ...
and evidence related to
physics beyond the Standard Model Physics beyond the Standard Model (BSM) refers to the theoretical developments needed to explain the deficiencies of the Standard Model, such as the inability to explain the fundamental parameters of the standard model, the strong CP problem, neut ...
.


Boson stars

A boson star is a hypothetical
astronomical object An astronomical object, celestial object, stellar object or heavenly body is a naturally occurring physical entity, association, or structure that exists within the observable universe. In astronomy, the terms ''object'' and ''body'' are of ...
formed out of particles called
boson In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0, 1, 2, ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have half odd-intege ...
s (conventional
star A star is a luminous spheroid of plasma (physics), plasma held together by Self-gravitation, self-gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night sk ...
s are formed from mostly protons and electrons, which are
fermion In particle physics, a fermion is a subatomic particle that follows Fermi–Dirac statistics. Fermions have a half-integer spin (spin 1/2, spin , Spin (physics)#Higher spins, spin , etc.) and obey the Pauli exclusion principle. These particles i ...
s, but also contain a large proportion of
helium-4 Helium-4 () is a stable isotope of the element helium. It is by far the more abundant of the two naturally occurring isotopes of helium, making up about 99.99986% of the helium on Earth. Its nucleus is identical to an alpha particle, and consi ...
nuclei, which are
boson In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0, 1, 2, ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have half odd-intege ...
s, and smaller amounts of various heavier nuclei, which can be either). For this type of star to exist, there must be a stable type of boson with self-repulsive interaction; one possible candidate particle is the still-hypothetical "axion" (which is also a candidate for the not-yet-detected "non-baryonic dark matter" particles, which appear to compose roughly 25% of the mass of the Universe). It is theorized that unlike normal stars (which emit radiation due to gravitational pressure and nuclear fusion), boson stars would be transparent and invisible. The immense gravity of a compact boson star would bend light around the object, creating an empty region resembling the shadow of a black hole's
event horizon In astrophysics, an event horizon is a boundary beyond which events cannot affect an outside observer. Wolfgang Rindler coined the term in the 1950s. In 1784, John Michell proposed that gravity can be strong enough in the vicinity of massive c ...
. Like a black hole, a boson star would absorb ordinary matter from its surroundings, but because of the transparency, matter (which would probably heat up and emit radiation) would be visible at its center. Simulations suggest that rotating boson stars would be
torus In geometry, a torus (: tori or toruses) is a surface of revolution generated by revolving a circle in three-dimensional space one full revolution about an axis that is coplanarity, coplanar with the circle. The main types of toruses inclu ...
-shaped, as centrifugal forces would give the bosonic matter that form. There is no significant evidence that such stars exist. However, it may become possible to detect them by the gravitational radiation emitted by a pair of co-orbiting boson stars. GW190521, thought to be the most energetic
black hole merger Black is a color that results from the absence or complete Absorption (electromagnetic radiation), absorption of visible spectrum, visible light. It is an achromatic color, without Colorfulness#Chroma, chroma, like white and grey. It is ofte ...
ever recorded, may be the head-on collision of two boson stars. The invisible companion to a Sun-like star identified by
Gaia mission ''Gaia'' was a space observatory of the European Space Agency (ESA) that was launched in 2013 and operated until March 2025. The spacecraft was designed for astrometry: measuring the positions, distances and motions of stars with unprecedented ...
could be a black hole or either a boson star or an exotic star of other types. Boson stars may have formed through gravitational collapse during the primordial stages of the Big Bang. At least in theory, a supermassive boson star could exist at the core of a galaxy, which may explain many of the observed properties of active galactic cores. Boson stars have also been proposed as candidate
dark matter In astronomy, dark matter is an invisible and hypothetical form of matter that does not interact with light or other electromagnetic radiation. Dark matter is implied by gravity, gravitational effects that cannot be explained by general relat ...
objects, and it has been hypothesized that the
dark matter halo In modern models of physical cosmology, a dark matter halo is a basic unit of cosmological structure. It is a hypothetical region that has decoupled from cosmic expansion and contains gravitationally bound matter. A single dark matter halo ma ...
es surrounding most
galaxies A galaxy is a system of stars, stellar remnants, interstellar gas, dust, and dark matter bound together by gravity. The word is derived from the Greek ' (), literally 'milky', a reference to the Milky Way galaxy that contains the Solar Sys ...
might be viewed as enormous "boson stars." The compact boson stars and boson shells are often studied involving fields like the massive (or massless) complex scalar fields, the U(1) gauge field and gravity with conical potential. The presence of a positive or negative cosmological constant in the theory facilitates a study of these objects in de Sitter and
anti-de Sitter space In mathematics and physics, ''n''-dimensional anti-de Sitter space (AdS''n'') is a symmetric_space, maximally symmetric Lorentzian manifold with constant negative scalar curvature. Anti-de Sitter space and de Sitter space are na ...
s. Boson stars composed of elementary particles with spin-1 have been labelled Proca stars. Braaten, Mohapatra, and Zhang have theorized that a new type dense
axion An axion () is a hypothetical elementary particle originally theorized in 1978 independently by Frank Wilczek and Steven Weinberg as the Goldstone boson of Peccei–Quinn theory, which had been proposed in 1977 to solve the strong CP problem ...
-star may exist in which gravity is balanced by the mean-field pressure of the axion
Bose–Einstein condensate In condensed matter physics, a Bose–Einstein condensate (BEC) is a state of matter that is typically formed when a gas of bosons at very low Density, densities is cooled to temperatures very close to absolute zero#Relation with Bose–Einste ...
. The possibility that dense axion stars exist has been challenged by other work that does not support this claim.


Planck stars

In
loop quantum gravity Loop quantum gravity (LQG) is a theory of quantum gravity that incorporates matter of the Standard Model into the framework established for the intrinsic quantum gravity case. It is an attempt to develop a quantum theory of gravity based direc ...
, a Planck star is a hypothetically possible
astronomical object An astronomical object, celestial object, stellar object or heavenly body is a naturally occurring physical entity, association, or structure that exists within the observable universe. In astronomy, the terms ''object'' and ''body'' are of ...
that is created when the
energy density In physics, energy density is the quotient between the amount of energy stored in a given system or contained in a given region of space and the volume of the system or region considered. Often only the ''useful'' or extractable energy is measure ...
of a collapsing star reaches the Planck energy density. Under these conditions, assuming
gravity In physics, gravity (), also known as gravitation or a gravitational interaction, is a fundamental interaction, a mutual attraction between all massive particles. On Earth, gravity takes a slightly different meaning: the observed force b ...
and
spacetime In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualiz ...
are quantized, there arises a repulsive "force" derived from Heisenberg's
uncertainty principle The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position a ...
. In other words, if gravity and spacetime are quantized, the accumulation of mass-energy inside the Planck star cannot collapse beyond this limit to form a
gravitational singularity A gravitational singularity, spacetime singularity, or simply singularity, is a theoretical condition in which gravity is predicted to be so intense that spacetime itself would break down catastrophically. As such, a singularity is by defini ...
because it would violate the uncertainty principle for spacetime itself.


Q-stars

Q-stars are hypothetical objects that originate from
supernovae A supernova (: supernovae or supernovas) is a powerful and luminous explosion of a star. A supernova occurs during the last evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion. The original ob ...
or the big bang. They are theorized to be massive enough to bend space-time to a degree such that some, but not all light could escape from its surface. These are predicted to be denser than
neutron stars A neutron star is the gravitationally collapsed core of a massive supergiant star. It results from the supernova explosion of a massive star—combined with gravitational collapse—that compresses the core past white dwarf star density to th ...
or even quark stars.


Dark stars

In
Newtonian mechanics Newton's laws of motion are three physical laws that describe the relationship between the motion of an object and the forces acting on it. These laws, which provide the basis for Newtonian mechanics, can be paraphrased as follows: # A body r ...
, objects dense enough to trap any emitted light are called '' dark stars'',, as opposed to
black holes A black hole is a massive, compact astronomical object so dense that its gravity prevents anything from escaping, even light. Albert Einstein's theory of general relativity predicts that a sufficiently compact mass will form a black hole. Th ...
in
general relativity General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
. However, the same name is used for hypothetical ancient "stars" which derived energy from dark matter. Quantum effects may prevent true black holes from forming and give rise instead to dense entities called '' black stars''.


See also

* Quasi-star * Quark nova *
Degeneracy pressure In astrophysics and condensed matter physics, electron degeneracy pressure is a quantum mechanical effect critical to understanding the stability of white dwarf stars and metal solids. It is a manifestation of the more general phenomenon of quan ...


Footnotes


References


Sources

* * * * * *


External links

* * * * * * * * * * * {{Portal bar, Astronomy, Outer space Degenerate stars Hypothetical stars Compact stars Star types