HOME

TheInfoList



OR:

Electronic engineering is a sub-discipline of
electrical engineering Electrical engineering is an engineering discipline concerned with the study, design, and application of equipment, devices, and systems that use electricity, electronics, and electromagnetism. It emerged as an identifiable occupation in the l ...
that emerged in the early 20th century and is distinguished by the additional use of active components such as semiconductor devices to amplify and control electric current flow. Previously electrical engineering only used passive devices such as mechanical switches, resistors, inductors, and capacitors. It covers fields such as analog electronics, digital electronics, consumer electronics, embedded systems and power electronics. It is also involved in many related fields, for example
solid-state physics Solid-state physics is the study of rigid matter, or solids, through methods such as solid-state chemistry, quantum mechanics, crystallography, electromagnetism, and metallurgy. It is the largest branch of condensed matter physics. Solid-state phy ...
, radio engineering,
telecommunications Telecommunication, often used in its plural form or abbreviated as telecom, is the transmission of information over a distance using electronic means, typically through cables, radio waves, or other communication technologies. These means of ...
, control systems,
signal processing Signal processing is an electrical engineering subfield that focuses on analyzing, modifying and synthesizing ''signals'', such as audio signal processing, sound, image processing, images, Scalar potential, potential fields, Seismic tomograph ...
, systems engineering, computer engineering, instrumentation engineering, electric power control, photonics and robotics. The
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers (IEEE) is an American 501(c)(3) public charity professional organization for electrical engineering, electronics engineering, and other related disciplines. The IEEE has a corporate office ...
(IEEE) is one of the most important professional bodies for electronics engineers in the US; the equivalent body in the UK is the Institution of Engineering and Technology (IET). The
International Electrotechnical Commission The International Electrotechnical Commission (IEC; ) is an international standards organization that prepares and publishes international standards for all electrical, electronics, electronic and related technologies. IEC standards cover a va ...
(IEC) publishes electrical standards including those for electronics engineering.


History and development

Electronics engineering as a profession emerged following Karl Ferdinand Braun´s development of the crystal detector, the first semiconductor device, in 1874 and the identification of the electron in 1897 and the subsequent invention of the
vacuum tube A vacuum tube, electron tube, thermionic valve (British usage), or tube (North America) is a device that controls electric current flow in a high vacuum between electrodes to which an electric voltage, potential difference has been applied. It ...
which could amplify and rectify small electrical signals, that inaugurated the field of electronics. Practical applications started with the invention of the
diode A diode is a two-Terminal (electronics), terminal electronic component that conducts electric current primarily in One-way traffic, one direction (asymmetric electrical conductance, conductance). It has low (ideally zero) Electrical resistance ...
by Ambrose Fleming and the
triode A triode is an electronic amplifier, amplifying vacuum tube (or ''thermionic valve'' in British English) consisting of three electrodes inside an evacuated glass envelope: a heated Electrical filament, filament or cathode, a control grid, grid ...
by
Lee De Forest #REDIRECT Lee de Forest {{redirect category shell, {{R from move{{R from other capitalisation ...
in the early 1900s, which made the detection of small electrical voltages such as radio signals from a radio antenna possible with a non-mechanical device. The growth of electronics was rapid. By the early 1920s, commercial radio broadcasting and communications were becoming widespread and electronic amplifiers were being used in such diverse applications as long-distance telephony and the music recording industry. The discipline was further enhanced by the large amount of electronic systems development during
World War II World War II or the Second World War (1 September 1939 – 2 September 1945) was a World war, global conflict between two coalitions: the Allies of World War II, Allies and the Axis powers. World War II by country, Nearly all of the wo ...
in such as
radar Radar is a system that uses radio waves to determine the distance ('' ranging''), direction ( azimuth and elevation angles), and radial velocity of objects relative to the site. It is a radiodetermination method used to detect and track ...
and sonar, and the subsequent peace-time consumer revolution following the invention of
transistor A transistor is a semiconductor device used to Electronic amplifier, amplify or electronic switch, switch electrical signals and electric power, power. It is one of the basic building blocks of modern electronics. It is composed of semicondu ...
by William Shockley, John Bardeen and Walter Brattain.


Specialist areas

Electronics engineering has many subfields. This section describes some of the most popular. Electronic signal processing deals with the analysis and manipulation of signals. Signals can be either analog, in which case the signal varies continuously according to the information, or digital, in which case the signal varies according to a series of discrete values representing the information. For analog signals, signal processing may involve the amplification and filtering of audio signals for audio equipment and the
modulation Signal modulation is the process of varying one or more properties of a periodic waveform in electronics and telecommunication for the purpose of transmitting information. The process encodes information in form of the modulation or message ...
and demodulation of radio frequency signals for
telecommunication Telecommunication, often used in its plural form or abbreviated as telecom, is the transmission of information over a distance using electronic means, typically through cables, radio waves, or other communication technologies. These means of ...
s. For digital signals, signal processing may involve compression, error checking and error detection, and correction. Telecommunications engineering deals with the transmission of information across a medium such as a co-axial cable, an optical fiber, or free space. Transmissions across free space require information to be encoded in a carrier wave in order to be transmitted, this is known as
modulation Signal modulation is the process of varying one or more properties of a periodic waveform in electronics and telecommunication for the purpose of transmitting information. The process encodes information in form of the modulation or message ...
. Popular analog modulation techniques include
amplitude modulation Amplitude modulation (AM) is a signal modulation technique used in electronic communication, most commonly for transmitting messages with a radio wave. In amplitude modulation, the instantaneous amplitude of the wave is varied in proportion t ...
and frequency modulation. Once the transmission characteristics of a system are determined, telecommunication engineers design the
transmitter In electronics and telecommunications, a radio transmitter or just transmitter (often abbreviated as XMTR or TX in technical documents) is an electronic device which produces radio waves with an antenna (radio), antenna with the purpose of sig ...
s and receivers needed for such systems. These two are sometimes combined to form a two-way communication device known as a transceiver. A key consideration in the design of transmitters is their power consumption as this is closely related to their signal strength. If the signal strength of a transmitter is insufficient the signal's information will be corrupted by noise. Aviation-electronics engineering and Aviation-telecommunications engineering, are concerned with
aerospace Aerospace is a term used to collectively refer to the atmosphere and outer space. Aerospace activity is very diverse, with a multitude of commercial, industrial, and military applications. Aerospace engineering consists of aeronautics and astron ...
applications. Aviation- telecommunication engineers include specialists who work on airborne avionics in the aircraft or ground equipment. Specialists in this field mainly need knowledge of
computer A computer is a machine that can be Computer programming, programmed to automatically Execution (computing), carry out sequences of arithmetic or logical operations (''computation''). Modern digital electronic computers can perform generic set ...
, networking, IT, and sensors. These courses are offered at such as Civil Aviation Technology Colleges. Control engineering has a wide range of electronic applications from the flight and propulsion systems of commercial airplanes to the cruise control present in many modern cars. It also plays an important role in industrial automation. Control engineers often use feedback when designing control systems. Instrumentation engineering deals with the design of devices to measure physical quantities such as
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and eve ...
, flow, and
temperature Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
. The design of such instrumentation requires a good understanding of electronics engineering and
physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
; for example, radar guns use the Doppler effect to measure the speed of oncoming vehicles. Similarly, thermocouples use the Peltier–Seebeck effect to measure the temperature difference between two points. Often instrumentation is not used by itself, but instead as the sensors of larger electrical systems. For example, a thermocouple might be used to help ensure a furnace's temperature remains constant. For this reason, instrumentation engineering is often viewed as the counterpart of control engineering. Computer engineering deals with the design of
computer A computer is a machine that can be Computer programming, programmed to automatically Execution (computing), carry out sequences of arithmetic or logical operations (''computation''). Modern digital electronic computers can perform generic set ...
s and computer systems. This may involve the design of new computer hardware, the design of PDAs or the use of computers to control an industrial plant. Development of embedded systems—systems made for specific tasks (e.g., mobile phones)—is also included in this field. This field includes the microcontroller and its applications. Computer engineers may also work on a system's
software Software consists of computer programs that instruct the Execution (computing), execution of a computer. Software also includes design documents and specifications. The history of software is closely tied to the development of digital comput ...
. However, the design of complex software systems is often the domain of
software engineering Software engineering is a branch of both computer science and engineering focused on designing, developing, testing, and maintaining Application software, software applications. It involves applying engineering design process, engineering principl ...
which falls under
computer science Computer science is the study of computation, information, and automation. Computer science spans Theoretical computer science, theoretical disciplines (such as algorithms, theory of computation, and information theory) to Applied science, ...
, which is usually considered a separate discipline. VLSI design engineering VLSI stands for ''very large-scale integration''. It deals with fabrication of ICs and various electronic components. In designing an integrated circuit, electronics engineers first construct circuit schematics that specify the electrical components and describe the interconnections between them. When completed, VLSI engineers convert the schematics into actual layouts, which map the layers of various conductor and
semiconductor A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping level ...
materials needed to construct the circuit.


Education and training

Electronics is a subfield within the wider
electrical engineering Electrical engineering is an engineering discipline concerned with the study, design, and application of equipment, devices, and systems that use electricity, electronics, and electromagnetism. It emerged as an identifiable occupation in the l ...
academic subject. Electronics engineers typically possess an
academic degree An academic degree is a qualification awarded to a student upon successful completion of a course of study in higher education, usually at a college or university. These institutions often offer degrees at various levels, usually divided into und ...
with a major in electronics engineering. The length of study for such a degree is usually three or four years and the completed degree may be designated as a Bachelor of Engineering, Bachelor of Science, Bachelor of Applied Science, or Bachelor of Technology depending upon the university. Many UK universities also offer Master of Engineering ( MEng) degrees at the graduate level. Some electronics engineers also choose to pursue a postgraduate degree such as a Master of Science, Doctor of Philosophy in Engineering, or an Engineering Doctorate. The master's degree is being introduced in some European and American Universities as a first degree and the differentiation of an engineer with graduate and postgraduate studies is often difficult. In these cases, experience is taken into account. The master's degree may consist of either research, coursework or a mixture of the two. The Doctor of Philosophy consists of a significant research component and is often viewed as the entry point to academia. In most countries, a bachelor's degree in engineering represents the first step towards certification and the degree program itself is certified by a professional body. Certification allows engineers to legally sign off on plans for projects affecting public safety. After completing a certified degree program, the engineer must satisfy a range of requirements, including work experience requirements, before being certified. Once certified the engineer is designated the title of Professional Engineer (in the United States, Canada, and South Africa), Chartered Engineer or Incorporated Engineer (in the United Kingdom, Ireland, India, and Zimbabwe), Chartered Professional Engineer (in Australia and New Zealand) or European Engineer (in much of the European Union). A degree in electronics generally includes units covering
physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
,
chemistry Chemistry is the scientific study of the properties and behavior of matter. It is a physical science within the natural sciences that studies the chemical elements that make up matter and chemical compound, compounds made of atoms, molecules a ...
,
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, project management and specific topics in
electrical engineering Electrical engineering is an engineering discipline concerned with the study, design, and application of equipment, devices, and systems that use electricity, electronics, and electromagnetism. It emerged as an identifiable occupation in the l ...
. Initially, such topics cover most, if not all, of the subfields of electronics engineering. Students then choose to specialize in one or more subfields towards the end of the degree. Fundamental to the discipline are the sciences of physics and mathematics as these help to obtain both a qualitative and quantitative description of how such systems will work. Today, most engineering work involves the use of computers and it is commonplace to use computer-aided design and simulation software programs when designing electronic systems. Although most electronic engineers will understand basic circuit theory, the theories employed by engineers generally depend upon the work they do. For example,
quantum mechanics Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
and
solid-state physics Solid-state physics is the study of rigid matter, or solids, through methods such as solid-state chemistry, quantum mechanics, crystallography, electromagnetism, and metallurgy. It is the largest branch of condensed matter physics. Solid-state phy ...
might be relevant to an engineer working on VLSI but are largely irrelevant to engineers working with embedded systems. Apart from electromagnetics and network theory, other items in the syllabus are particular to ''electronic'' engineering courses. ''Electrical'' engineering courses have other specialisms such as machines, power generation, and distribution. This list does not include the extensive engineering mathematics curriculum that is a prerequisite to a degree.


Supporting knowledge areas

The huge breadth of electronics engineering has led to the use of a large number of specialists supporting knowledge areas. Elements of vector calculus: divergence and curl; Gauss' and Stokes' theorems, Maxwell's equations: differential and integral forms. Wave equation, Poynting vector. Plane waves: propagation through various media; reflection and
refraction In physics, refraction is the redirection of a wave as it passes from one transmission medium, medium to another. The redirection can be caused by the wave's change in speed or by a change in the medium. Refraction of light is the most commo ...
; phase and group velocity; skin depth. Transmission lines: characteristic impedance; impedance transformation; Smith chart; impedance matching; pulse excitation. Waveguides: modes in rectangular waveguides; boundary conditions; cut-off frequencies; dispersion relations. Antennas: Dipole antennas; antenna arrays; radiation pattern; reciprocity theorem, antenna gain. Network graphs: matrices associated with graphs; incidence, fundamental cut set, and fundamental circuit matrices. Solution methods: nodal and mesh analysis. Network theorems: superposition, Thevenin and Norton's maximum power transfer, Wye-Delta transformation. Steady state sinusoidal analysis using phasors. Linear constant coefficient differential equations; time domain analysis of simple RLC circuits, Solution of network equations using Laplace transform: frequency domain analysis of RLC circuits. 2-port network parameters: driving point and transfer functions. State equations for networks. Electronic devices: Energy bands in silicon, intrinsic and extrinsic silicon. Carrier transport in silicon: diffusion current, drift current, mobility, resistivity. Generation and recombination of carriers. p-n junction diode, Zener diode, tunnel diode, BJT, JFET, MOS capacitor, MOSFET, LED, p-i-n and avalanche photo diode, LASERs. Device technology: integrated circuit fabrication process, oxidation, diffusion, ion implantation, photolithography, n-tub, p-tub and twin-tub CMOS process. Analog circuits: Equivalent circuits (large and small-signal) of diodes, BJT, JFETs, and MOSFETs. Simple diode circuits, clipping, clamping, rectifier. Biasing and bias stability of transistor and FET amplifiers. Amplifiers: single-and multi-stage, differential, operational, feedback and power. Analysis of amplifiers; frequency response of amplifiers. Simple op-amp circuits. Filters. Sinusoidal oscillators; criterion for oscillation; single-transistor and op-amp configurations. Function generators and wave-shaping circuits, Power supplies. Digital circuits: Boolean functions ( NOT, AND, OR, XOR,...). Logic gates digital IC families ( DTL, TTL, ECL, MOS, CMOS). Combinational circuits: arithmetic circuits, code converters, multiplexers, and decoders. Sequential circuits: latches and flip-flops, counters, and shift-registers. Sample and hold circuits, ADCs, DACs. Semiconductor memories. Microprocessor 8086: architecture, programming, memory, and I/O interfacing. Signals and systems: Definitions and properties of Laplace transform, continuous-time and discrete-time Fourier series, continuous-time and discrete-time Fourier Transform, z-transform. Sampling theorems. Linear Time-Invariant (LTI) Systems: definitions and properties; causality, stability, impulse response, convolution, poles and zeros frequency response, group delay and phase delay. Signal transmission through LTI systems. Random signals and noise: probability, random variables, probability density function, autocorrelation, power spectral density, and function analogy between vectors & functions.


Electronic Control systems

Basic control system components; block diagrammatic description, reduction of block diagrams — Mason's rule. Open loop and closed loop (negative unity feedback) systems and stability analysis of these systems. Signal flow graphs and their use in determining transfer functions of systems; transient and steady-state analysis of LTI control systems and frequency response. Analysis of steady-state disturbance rejection and noise sensitivity. Tools and techniques for LTI control system analysis and design: root loci, Routh–Hurwitz stability criterion, Bode and Nyquist plots. Control system compensators: elements of lead and lag compensation, elements of proportional–integral–derivative (PID) control. Discretization of continuous-time systems using zero-order hold and ADCs for digital controller implementation. Limitations of digital controllers: aliasing. State variable representation and solution of state equation of LTI control systems. Linearization of Nonlinear dynamical systems with state-space realizations in both frequency and time domains. Fundamental concepts of controllability and observability for MIMO LTI systems. State space realizations: observable and controllable canonical form. Ackermann's formula for state-feedback pole placement. Design of full order and reduced order estimators.


Communications

Analog communication systems: amplitude and angle modulation and demodulation systems, spectral analysis of these operations, superheterodyne noise conditions. Digital communication systems: pulse-code modulation (PCM), differential pulse-code modulation (DPCM), delta modulation (DM), digital modulation – amplitude, phase- and frequency-shift keying schemes ( ASK, PSK, FSK), matched-filter receivers, bandwidth consideration and probability of error calculations for these schemes, GSM, TDMA.


Professional bodies

Professional bodies of note for electrical engineers USA's
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers (IEEE) is an American 501(c)(3) public charity professional organization for electrical engineering, electronics engineering, and other related disciplines. The IEEE has a corporate office ...
(IEEE) and the UK's Institution of Engineering and Technology (IET). Members of the Institution of Engineering and Technology (MIET) are recognized professionally in Europe, as electrical and computer engineers. The IEEE claims to produce 30 percent of the world's literature in electrical and electronics engineering, has over 430,000 members, and holds more than 450 IEEE sponsored or cosponsored conferences worldwide each year. Senior membership of the IEEE is a recognised professional designation in the United States.


Project engineering

For most engineers not involved at the cutting edge of system design and development, technical work accounts for only a fraction of the work they do. A lot of time is also spent on tasks such as discussing proposals with clients, preparing budgets and determining project schedules. Many senior engineers manage a team of technicians or other engineers and for this reason, project management skills are important. Most engineering projects involve some form of documentation and strong written communication skills are therefore very important. The workplaces of electronics engineers are just as varied as the types of work they do. Electronics engineers may be found in the pristine laboratory environment of a fabrication plant, the offices of a consulting firm or in a research laboratory. During their working life, electronics engineers may find themselves supervising a wide range of individuals including scientists, electricians, programmers, and other engineers. Obsolescence of technical skills is a serious concern for electronics engineers. Membership and participation in technical societies, regular reviews of periodicals in the field, and a habit of continued learning are therefore essential to maintaining proficiency, which is even more crucial in the field of consumer electronics products.Homer L. Davidson, ''Troubleshooting and Repairing Consumer Electronics'', p. 1, McGraw–Hill Professional, 2004. .


See also

* Comparison of EDA software * Electrical engineering technology * Glossary of electrical and electronics engineering * Index of electrical engineering articles * Information engineering * List of electrical engineers * Timeline of electrical and electronics engineering


References


External links

{{Use dmy dates, date=January 2018 Electrical engineering Computer engineering Engineering disciplines