In
atomic physics
Atomic physics is the field of physics that studies atoms as an isolated system of electrons and an atomic nucleus. Atomic physics typically refers to the study of atomic structure and the interaction between atoms. It is primarily concerned wit ...
, the electron magnetic moment, or more specifically the electron magnetic dipole moment, is the
magnetic moment
In electromagnetism, the magnetic moment or magnetic dipole moment is the combination of strength and orientation of a magnet or other object or system that exerts a magnetic field. The magnetic dipole moment of an object determines the magnitude ...
of an
electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
resulting from its intrinsic properties of
spin and
electric charge
Electric charge (symbol ''q'', sometimes ''Q'') is a physical property of matter that causes it to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative''. Like charges repel each other and ...
. The value of the electron magnetic moment (symbol ''μ''
e) is In units of the
Bohr magneton
In atomic physics, the Bohr magneton (symbol ) is a physical constant and the natural unit for expressing the magnetic moment of an electron caused by its orbital or spin angular momentum.
In SI units, the Bohr magneton is defined as
\mu_\mat ...
(''μ''
B), it is which has a relative uncertainty of .
Magnetic moment of an electron
The electron is a
charged particle
In physics, a charged particle is a particle with an electric charge. For example, some elementary particles, like the electron or quarks are charged. Some composite particles like protons are charged particles. An ion, such as a molecule or atom ...
with charge , where is the
unit of elementary charge. Its
angular momentum
Angular momentum (sometimes called moment of momentum or rotational momentum) is the rotational analog of Momentum, linear momentum. It is an important physical quantity because it is a Conservation law, conserved quantity – the total ang ...
comes from two types of rotation:
spin and
orbital motion
In celestial mechanics, an orbit (also known as orbital revolution) is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an obj ...
. From
classical electrodynamics, a rotating distribution of
electric charge
Electric charge (symbol ''q'', sometimes ''Q'') is a physical property of matter that causes it to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative''. Like charges repel each other and ...
produces a
magnetic dipole, so that it behaves like a tiny
bar magnet. One consequence is that an external
magnetic field
A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
exerts a
torque
In physics and mechanics, torque is the rotational analogue of linear force. It is also referred to as the moment of force (also abbreviated to moment). The symbol for torque is typically \boldsymbol\tau, the lowercase Greek letter ''tau''. Wh ...
on the electron
magnetic moment
In electromagnetism, the magnetic moment or magnetic dipole moment is the combination of strength and orientation of a magnet or other object or system that exerts a magnetic field. The magnetic dipole moment of an object determines the magnitude ...
that depends on the orientation of this dipole with respect to the field.
If the electron is visualized as a classical rigid body in which the mass and charge have identical distribution and motion that is rotating about an axis with
angular momentum
Angular momentum (sometimes called moment of momentum or rotational momentum) is the rotational analog of Momentum, linear momentum. It is an important physical quantity because it is a Conservation law, conserved quantity – the total ang ...
, its magnetic dipole moment is given by:
where is the
electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
rest mass
The invariant mass, rest mass, intrinsic mass, proper mass, or in the case of bound systems simply mass, is the portion of the total mass of an object or system of objects that is independent of the overall motion of the system. More precisely, ...
. The
angular momentum
Angular momentum (sometimes called moment of momentum or rotational momentum) is the rotational analog of Momentum, linear momentum. It is an important physical quantity because it is a Conservation law, conserved quantity – the total ang ...
in this equation may be the spin angular momentum, the orbital angular momentum, or the total angular momentum. The ratio between the true
spin magnetic moment and that predicted by this model is a
dimensionless
Dimensionless quantities, or quantities of dimension one, are quantities implicitly defined in a manner that prevents their aggregation into units of measurement. ISBN 978-92-822-2272-0. Typically expressed as ratios that align with another sy ...
factor , known as the electron
-factor:
It is usual to express the magnetic moment in terms of the
reduced Planck constant
The Planck constant, or Planck's constant, denoted by h, is a fundamental physical constant of foundational importance in quantum mechanics: a photon's energy is equal to its frequency multiplied by the Planck constant, and the wavelength of a ...
and the
Bohr magneton
In atomic physics, the Bohr magneton (symbol ) is a physical constant and the natural unit for expressing the magnetic moment of an electron caused by its orbital or spin angular momentum.
In SI units, the Bohr magneton is defined as
\mu_\mat ...
B:
Formal definition
Classical notions such as the center of charge and mass are, however, hard to make precise for a quantum elementary particle. In practice the definition used by experimentalists comes from the
form factors
appearing in the matrix element
of the electromagnetic current operator between two on-shell states. Here
and
are 4-spinor solution of the
Dirac equation
In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac ...
normalized so that
, and
is the momentum transfer from the current to the electron. The
form factor
is the electron's charge,
is its static magnetic dipole moment, and
provides the formal definion of the
electron's electric dipole moment. The remaining form factor
would, if non zero, be the
anapole moment.
Spin magnetic dipole moment
The
spin magnetic moment is intrinsic for an electron. It is
Here is the electron spin angular momentum. The spin
-factor is approximately two:
. The factor of two indicates that the electron appears to be twice as effective in producing a magnetic moment as a charged body for which the mass and charge distributions are identical.
The spin magnetic dipole moment is approximately one
B because
and the electron is a spin- particle ():
The component of the electron magnetic moment is
where
s is the
spin quantum number
In physics and chemistry, the spin quantum number is a quantum number (designated ) that describes the intrinsic angular momentum (or spin angular momentum, or simply ''spin'') of an electron or other particle. It has the same value for all ...
. Note that is a ''negative'' constant multiplied by the
spin, so the magnetic moment is ''
antiparallel'' to the spin angular momentum.
The spin
''g''-factor comes from the
Dirac equation
In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac ...
, a fundamental equation connecting the electron's spin with its electromagnetic properties. Reduction of the Dirac equation for an electron in a magnetic field to its non-relativistic limit yields the Schrödinger equation with a correction term, which takes account of the interaction of the electron's intrinsic magnetic moment with the magnetic field giving the correct energy.
For the electron spin, the most accurate value for the spin
-factor has been experimentally determined to have the value
Note that this differs only marginally from the value from the Dirac equation. The small correction is known as the
anomalous magnetic dipole moment of the electron; it arises from the electron's interaction with virtual photons in
quantum electrodynamics
In particle physics, quantum electrodynamics (QED) is the Theory of relativity, relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quant ...
. A triumph of the
quantum electrodynamics
In particle physics, quantum electrodynamics (QED) is the Theory of relativity, relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quant ...
theory is the accurate prediction of the electron ''g''-factor. The CODATA value for the electron magnetic moment is
Orbital magnetic dipole moment
The revolution of an electron around an axis through another object, such as the nucleus, gives rise to the orbital magnetic dipole moment. Suppose that the angular momentum for the orbital motion is . Then the orbital magnetic dipole moment is
Here
L is the electron orbital
-factor and
B is the
Bohr magneton
In atomic physics, the Bohr magneton (symbol ) is a physical constant and the natural unit for expressing the magnetic moment of an electron caused by its orbital or spin angular momentum.
In SI units, the Bohr magneton is defined as
\mu_\mat ...
. The value of
L is exactly equal to one, by a quantum-mechanical argument analogous to the derivation of the
classical gyromagnetic ratio.
Total magnetic dipole moment
The total
magnetic dipole moment
In electromagnetism, the magnetic moment or magnetic dipole moment is the combination of strength and orientation of a magnet or other object or system that exerts a magnetic field. The magnetic dipole moment of an object determines the magnitude ...
resulting from both spin and orbital angular momenta of an electron is related to the total angular momentum by a similar equation:
The
-factor J is known as the
Landé ''g''-factor, which can be related to
L and
S by quantum mechanics. See
Landé ''g''-factor for details.
Example: hydrogen atom
For a
hydrogen
Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
atom, an
electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
occupying the
atomic orbital
In quantum mechanics, an atomic orbital () is a Function (mathematics), function describing the location and Matter wave, wave-like behavior of an electron in an atom. This function describes an electron's Charge density, charge distribution a ...
, the
magnetic dipole moment
In electromagnetism, the magnetic moment or magnetic dipole moment is the combination of strength and orientation of a magnet or other object or system that exerts a magnetic field. The magnetic dipole moment of an object determines the magnitude ...
is given by
Here is the orbital
angular momentum
Angular momentum (sometimes called moment of momentum or rotational momentum) is the rotational analog of Momentum, linear momentum. It is an important physical quantity because it is a Conservation law, conserved quantity – the total ang ...
, , , and are the
principal,
azimuthal, and
magnetic
Magnetism is the class of physical attributes that occur through a magnetic field, which allows objects to attract or repel each other. Because both electric currents and magnetic moments of elementary particles give rise to a magnetic field, m ...
quantum numbers
In Quantum mechanics, quantum physics and chemistry, quantum numbers are quantities that characterize the possible states of the system.
To fully specify the state of the electron in a hydrogen atom, four quantum numbers are needed. The traditi ...
respectively.
The component of the orbital magnetic dipole moment for an electron with a
magnetic quantum number
In atomic physics, a magnetic quantum number is a quantum number used to distinguish quantum states of an electron or other particle according to its angular momentum along a given axis in space. The orbital magnetic quantum number ( or ) disting ...
ℓ is given by
History
The electron magnetic moment is intrinsically connected to electron spin and was first hypothesized during the early models of the atom in the early twentieth century. The first to introduce the idea of electron spin was
Arthur Compton
Arthur Holly Compton (September 10, 1892 – March 15, 1962) was an American particle physicist who won the 1927 Nobel Prize in Physics for his discovery of the Compton effect, which demonstrated the particle nature of electromagnetic radiati ...
in his 1921 paper on investigations of ferromagnetic substances with X-rays.
In Compton's article, he wrote: "Perhaps the most natural, and certainly the most generally accepted view of the nature of the elementary magnet, is that the revolution of electrons in orbits within the atom give to the atom as a whole the properties of a tiny permanent magnet."
[
That same year Otto Stern proposed an experiment carried out later called the Stern–Gerlach experiment in which silver atoms in a magnetic field were deflected in opposite directions of distribution. This pre-1925 period marked the ]old quantum theory
The old quantum theory is a collection of results from the years 1900–1925, which predate modern quantum mechanics. The theory was never complete or self-consistent, but was instead a set of heuristic corrections to classical mechanics. The th ...
built upon the Bohr-Sommerfeld model of the atom with its classical elliptical electron orbits. During the period between 1916 and 1925, much progress was being made concerning the arrangement of electrons in the periodic table
The periodic table, also known as the periodic table of the elements, is an ordered arrangement of the chemical elements into rows (" periods") and columns (" groups"). It is an icon of chemistry and is widely used in physics and other s ...
. In order to explain the Zeeman effect
The Zeeman effect () is the splitting of a spectral line into several components in the presence of a static magnetic field. It is caused by the interaction of the magnetic field with the magnetic moment of the atomic electron associated with ...
in the Bohr atom, Sommerfeld proposed that electrons would be based on three 'quantum numbers', n, k, and m, that described the size of the orbit, the shape of the orbit, and the direction in which the orbit was pointing. Irving Langmuir
Irving Langmuir (; January 31, 1881 – August 16, 1957) was an American chemist, physicist, and metallurgical engineer. He was awarded the Nobel Prize in Chemistry in 1932 for his work in surface chemistry.
Langmuir's most famous publicatio ...
had explained in his 1919 paper regarding electrons in their shells, "Rydberg has pointed out that these numbers are obtained from the series . The factor two suggests a fundamental two-fold symmetry for all stable atoms." This configuration was adopted by Edmund Stoner, in October 1924 in his paper 'The Distribution of Electrons Among Atomic Levels' published in the Philosophical Magazine. Wolfgang Pauli
Wolfgang Ernst Pauli ( ; ; 25 April 1900 – 15 December 1958) was an Austrian theoretical physicist and a pioneer of quantum mechanics. In 1945, after having been nominated by Albert Einstein, Pauli received the Nobel Prize in Physics "for the ...
hypothesized that this required a fourth quantum number with a two-valuedness.
Electron spin in the Pauli and Dirac theories
Starting from here the charge of the electron is . The necessity of introducing half-integral spin goes back experimentally to the results of the Stern–Gerlach experiment. A beam of atoms is run through a strong non-uniform magnetic field, which then splits into parts depending on the intrinsic angular momentum of the atoms. It was found that for silver
Silver is a chemical element; it has Symbol (chemistry), symbol Ag () and atomic number 47. A soft, whitish-gray, lustrous transition metal, it exhibits the highest electrical conductivity, thermal conductivity, and reflectivity of any metal. ...
atoms, the beam was split in two—the ground state therefore could not be integral, because even if the intrinsic angular momentum of the atoms were as small as possible, 1, the beam would be split into 3 parts, corresponding to atoms with = −1, 0, and +1. The conclusion is that silver atoms have net intrinsic angular momentum of . Pauli set up a theory which explained this splitting by introducing a two-component wave function and a corresponding correction term in the Hamiltonian
Hamiltonian may refer to:
* Hamiltonian mechanics, a function that represents the total energy of a system
* Hamiltonian (quantum mechanics), an operator corresponding to the total energy of that system
** Dyall Hamiltonian, a modified Hamiltonian ...
, representing a semi-classical coupling of this wave function
In quantum physics, a wave function (or wavefunction) is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters and (lower-case and capital psi (letter) ...
to an applied magnetic field, as so:
Here is the magnetic vector potential
In classical electromagnetism, magnetic vector potential (often denoted A) is the vector quantity defined so that its curl is equal to the magnetic field, B: \nabla \times \mathbf = \mathbf. Together with the electric potential ''φ'', the ma ...
and the electric potential
Electric potential (also called the ''electric field potential'', potential drop, the electrostatic potential) is defined as electric potential energy per unit of electric charge. More precisely, electric potential is the amount of work (physic ...
, both representing the electromagnetic field
An electromagnetic field (also EM field) is a physical field, varying in space and time, that represents the electric and magnetic influences generated by and acting upon electric charges. The field at any point in space and time can be regarde ...
, and = (, , ) are the Pauli matrices
In mathematical physics and mathematics, the Pauli matrices are a set of three complex matrices that are traceless, Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma (), they are occasionally denoted by tau () ...
. On squaring out the first term, a residual interaction with the magnetic field is found, along with the usual classical Hamiltonian of a charged particle interacting with an applied field:
This Hamiltonian is now a 2 × 2 matrix, so the Schrödinger equation based on it must use a two-component wave function. Pauli had introduced the 2 × 2 sigma matrices as pure ''phenomenology'' — Dirac now had a ''theoretical argument'' that implied that spin was somehow the consequence of incorporating relativity into quantum mechanics
Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
. On introducing the external electromagnetic 4-potential into the Dirac equation in a similar way, known as minimal coupling, it takes the form (in natural units
In physics, natural unit systems are measurement systems for which selected physical constants have been set to 1 through nondimensionalization of physical units. For example, the speed of light may be set to 1, and it may then be omitted, equa ...
= = 1)
where are the gamma matrices
In mathematical physics, the gamma matrices, \ \left\\ , also called the Dirac matrices, are a set of conventional matrices with specific anticommutation relations that ensure they generate a matrix representation of the Clifford algebra \ \mathr ...
(known as Dirac matrices) and is the imaginary unit
The imaginary unit or unit imaginary number () is a mathematical constant that is a solution to the quadratic equation Although there is no real number with this property, can be used to extend the real numbers to what are called complex num ...
. A second application of the Dirac operator
In mathematics and in quantum mechanics, a Dirac operator is a first-order differential operator that is a formal square root, or half-iterate, of a second-order differential operator such as a Laplacian. It was introduced in 1847 by William Ham ...
will now reproduce the Pauli term exactly as before, because the spatial Dirac matrices multiplied by , have the same squaring and commutation properties as the Pauli matrices. What is more, the value of the gyromagnetic ratio of the electron, standing in front of Pauli's new term, is explained from first principles. This was a major achievement of the Dirac equation and gave physicists great faith in its overall correctness. The Pauli theory may be seen as the low energy limit of the Dirac theory in the following manner. First the equation is written in the form of coupled equations for 2-spinors with the units restored:
so
Assuming the field is weak and the motion of the electron non-relativistic, we have the total energy of the electron approximately equal to its rest energy, and the momentum reducing to the classical value,
and so the second equation may be written
which is of order - thus at typical energies and velocities, the bottom components of the Dirac spinor
In quantum field theory, the Dirac spinor is the spinor that describes all known fundamental particles that are fermions, with the possible exception of neutrinos. It appears in the plane-wave solution to the Dirac equation, and is a certain comb ...
in the standard representation are much suppressed in comparison to the top components. Substituting this expression into the first equation gives after some rearrangement
The operator on the left represents the particle energy reduced by its rest energy, which is just the classical energy, so we recover Pauli's theory if we identify his 2-spinor with the top components of the Dirac spinor in the non-relativistic approximation. A further approximation gives the Schrödinger equation
The Schrödinger equation is a partial differential equation that governs the wave function of a non-relativistic quantum-mechanical system. Its discovery was a significant landmark in the development of quantum mechanics. It is named after E ...
as the limit of the Pauli theory. Thus the Schrödinger equation may be seen as the far non-relativistic approximation of the Dirac equation when one may neglect spin and work only at low energies and velocities. This also was a great triumph for the new equation, as it traced the mysterious that appears in it, and the necessity of a complex wave function, back to the geometry of space-time through the Dirac algebra. It also highlights why the Schrödinger equation, although superficially in the form of a diffusion equation, actually represents the propagation of waves.
It should be strongly emphasized that this separation of the Dirac spinor into large and small components depends explicitly on a low-energy approximation. The entire Dirac spinor represents an ''irreducible'' whole, and the components we have just neglected to arrive at the Pauli theory will bring in new phenomena in the relativistic regime – antimatter
In modern physics, antimatter is defined as matter composed of the antiparticles (or "partners") of the corresponding subatomic particle, particles in "ordinary" matter, and can be thought of as matter with reversed charge and parity, or go ...
and the idea of creation and annihilation of particles.
In a general case (if a certain linear function of electromagnetic field does not vanish identically), three out of four components of the spinor function in the Dirac equation can be algebraically eliminated, yielding an equivalent fourth-order partial differential equation for just one component. Furthermore, this remaining component can be made real by a gauge transform.
Measurement
The existence of the anomalous magnetic moment of the electron has been detected experimentally by magnetic resonance method. This allows the determination of hyperfine splitting of electron shell energy levels in atoms of protium and deuterium
Deuterium (hydrogen-2, symbol H or D, also known as heavy hydrogen) is one of two stable isotopes of hydrogen; the other is protium, or hydrogen-1, H. The deuterium nucleus (deuteron) contains one proton and one neutron, whereas the far more c ...
using the measured resonance frequency for several transitions.
The magnetic moment
In electromagnetism, the magnetic moment or magnetic dipole moment is the combination of strength and orientation of a magnet or other object or system that exerts a magnetic field. The magnetic dipole moment of an object determines the magnitude ...
of the electron has been measured using a one-electron quantum cyclotron
A cyclotron is a type of particle accelerator invented by Ernest Lawrence in 1929–1930 at the University of California, Berkeley, and patented in 1932. Lawrence, Ernest O. ''Method and apparatus for the acceleration of ions'', filed: Januar ...
and quantum nondemolition spectroscopy. The spin frequency of the electron is determined by the -factor.
See also
* Spin (physics)
Spin is an Intrinsic and extrinsic properties, intrinsic form of angular momentum carried by elementary particles, and thus by List of particles#Composite particles, composite particles such as hadrons, atomic nucleus, atomic nuclei, and atoms. S ...
* Electron precipitation Electron precipitation (also called energetic electron precipitation or EEP) is an atmospheric phenomenon that occurs when previously trapped electrons enter the Atmosphere of Earth, Earth's atmosphere, thus creating communications interferences and ...
* Bohr magneton
In atomic physics, the Bohr magneton (symbol ) is a physical constant and the natural unit for expressing the magnetic moment of an electron caused by its orbital or spin angular momentum.
In SI units, the Bohr magneton is defined as
\mu_\mat ...
* Nuclear magnetic moment
* Nucleon magnetic moment
* Anomalous magnetic dipole moment
* Electron electric dipole moment
* Fine structure
* Hyperfine structure
References
Bibliography
*
*
*
{{DEFAULTSORT:Electron Magnetic Dipole Moment
Atomic physics
Electric dipole moment
Magnetic moment
Particle physics
Physical constants