In
relativistic physics
In physics, relativistic mechanics refers to mechanics compatible with special relativity (SR) and general relativity (GR). It provides a non- quantum mechanical description of a system of particles, or of a fluid, in cases where the velocities o ...
, the electromagnetic stress–energy tensor is the contribution to the
stress–energy tensor
The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress ...
due to the
electromagnetic field
An electromagnetic field (also EM field) is a physical field, varying in space and time, that represents the electric and magnetic influences generated by and acting upon electric charges. The field at any point in space and time can be regarde ...
.
[Gravitation, J.A. Wheeler, C. Misner, K.S. Thorne, W.H. Freeman & Co, 1973, ] The stress–energy tensor describes the flow of energy and momentum in
spacetime
In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualiz ...
. The electromagnetic stress–energy tensor contains the negative of the classical
Maxwell stress tensor
The Maxwell stress tensor (named after James Clerk Maxwell) is a symmetric second-order tensor in three dimensions that is used in classical electromagnetism to represent the interaction between electromagnetic forces and mechanical momentum. In ...
that governs the electromagnetic interactions.
Definition
ISQ convention
The electromagnetic stress–energy tensor in the
International System of Quantities
The International System of Quantities (ISQ) is a standard system of Quantity, quantities used in physics and in modern science in general. It includes basic quantities such as length and mass and the relationships between those quantities. This ...
(ISQ), which underlies the
SI, is
where
is the
electromagnetic tensor
In electromagnetism, the electromagnetic tensor or electromagnetic field tensor (sometimes called the field strength tensor, Faraday tensor or Maxwell bivector) is a mathematical object that describes the electromagnetic field in spacetime. Th ...
and where
is the
Minkowski metric tensor of
metric signature
In mathematics, the signature of a metric tensor ''g'' (or equivalently, a real quadratic form thought of as a real symmetric bilinear form on a finite-dimensional vector space) is the number (counted with multiplicity) of positive, negative and z ...
and the
Einstein summation convention
In mathematics, especially the usage of linear algebra in mathematical physics and differential geometry, Einstein notation (also known as the Einstein summation convention or Einstein summation notation) is a notational convention that implies s ...
over repeated indices is used.
Explicitly in matrix form:
where
is the volumetric energy density,
is the
Poynting vector
In physics, the Poynting vector (or Umov–Poynting vector) represents the directional energy flux (the energy transfer per unit area, per unit time) or '' power flow'' of an electromagnetic field. The SI unit of the Poynting vector is the wat ...
,
is the
Maxwell stress tensor
The Maxwell stress tensor (named after James Clerk Maxwell) is a symmetric second-order tensor in three dimensions that is used in classical electromagnetism to represent the interaction between electromagnetic forces and mechanical momentum. In ...
, and
is the
speed of light
The speed of light in vacuum, commonly denoted , is a universal physical constant exactly equal to ). It is exact because, by international agreement, a metre is defined as the length of the path travelled by light in vacuum during a time i ...
. Thus, each component of
is dimensionally equivalent to pressure (with SI unit
pascal).
Gaussian CGS conventions
The in the
Gaussian system (shown here with a prime) that correspond to the
permittivity of free space
Vacuum permittivity, commonly denoted (pronounced "epsilon nought" or "epsilon zero"), is the value of the absolute dielectric permittivity of classical vacuum. It may also be referred to as the permittivity of free space, the electric const ...
and
permeability of free space are
then:
and in explicit matrix form:
where the energy density becomes
and the
Poynting vector
In physics, the Poynting vector (or Umov–Poynting vector) represents the directional energy flux (the energy transfer per unit area, per unit time) or '' power flow'' of an electromagnetic field. The SI unit of the Poynting vector is the wat ...
becomes
The stress–energy tensor for an electromagnetic field in a
dielectric
In electromagnetism, a dielectric (or dielectric medium) is an Insulator (electricity), electrical insulator that can be Polarisability, polarised by an applied electric field. When a dielectric material is placed in an electric field, electric ...
medium is less well understood and is the subject of the
Abraham–Minkowski controversy
The Abraham–Minkowski controversy is a physics debate concerning electromagnetic momentum within dielectric media. Two equations were first suggested by Hermann Minkowski (1908)
:* Wikisource translationThe Fundamental Equations for Electromagne ...
.
The element
of the stress–energy tensor represents the flux of the component with index
of the
four-momentum
In special relativity, four-momentum (also called momentum–energy or momenergy) is the generalization of the classical three-dimensional momentum to four-dimensional spacetime. Momentum is a vector in three dimensions; similarly four-momentum i ...
of the electromagnetic field, , going through a
hyperplane
In geometry, a hyperplane is a generalization of a two-dimensional plane in three-dimensional space to mathematical spaces of arbitrary dimension. Like a plane in space, a hyperplane is a flat hypersurface, a subspace whose dimension is ...
. It represents the contribution of electromagnetism to the source of the gravitational field (curvature of spacetime) in
general relativity
General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
.
Algebraic properties
The electromagnetic stress–energy tensor has several algebraic properties:
The symmetry of the tensor is as for a general stress–energy tensor in
general relativity
General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
. The trace of the energy–momentum tensor is a
Lorentz scalar
In a relativistic theory of physics, a Lorentz scalar is a scalar expression whose value is invariant under any Lorentz transformation. A Lorentz scalar may be generated from, e.g., the scalar product of vectors, or by contracting tensors. Whil ...
; the electromagnetic field (and in particular electromagnetic waves) has no
Lorentz-invariant
In relativistic physics, Lorentz symmetry or Lorentz invariance, named after the Dutch physicist Hendrik Lorentz, is an equivalence of observation or observational symmetry due to special relativity implying that the laws of physics stay the same ...
energy scale, so its energy–momentum tensor must have a vanishing trace. This tracelessness eventually relates to the masslessness of the
photon
A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
.
[Garg, Anupam. ''Classical Electromagnetism in a Nutshell'', p. 564 (Princeton University Press, 2012).]
Conservation laws
The electromagnetic stress–energy tensor allows a compact way of writing the
conservation laws of linear
momentum
In Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. ...
and
energy
Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
in electromagnetism. The divergence of the stress–energy tensor is:
where
is the (4D)
Lorentz force
In electromagnetism, the Lorentz force is the force exerted on a charged particle by electric and magnetic fields. It determines how charged particles move in electromagnetic environments and underlies many physical phenomena, from the operation ...
per unit volume on
matter
In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic pa ...
.
This equation is equivalent to the following 3D conservation laws
respectively describing the electromagnetic energy density
and electromagnetic momentum density
where
is the
electric current density
In electromagnetism, current density is the amount of charge per unit time that flows through a unit area of a chosen cross section. The current density vector is defined as a vector whose magnitude is the electric current per cross-sectional ...
,
the
electric charge density
In electromagnetism, charge density is the amount of electric charge per unit length, surface area, or volume. Volume charge density (symbolized by the Greek letter ρ) is the quantity of charge per unit volume, measured in the SI system in co ...
, and
is the Lorentz force density.
See also
*
Ricci calculus Ricci () is an Italian surname. Notable Riccis Arts and entertainment
* Antonio Ricci (painter) (c.1565–c.1635), Spanish Baroque painter of Italian origin
* Christina Ricci (born 1980), American actress
* Clara Ross Ricci (1858-1954), British ...
*
Covariant formulation of classical electromagnetism
The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transform ...
*
Mathematical descriptions of the electromagnetic field
*
Maxwell's equations
Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, Electrical network, electr ...
*
Maxwell's equations in curved spacetime
Maxwell's, last known as Maxwell's Tavern, was a bar/restaurant and Music venue, music club in Hoboken, New Jersey. Over several decades the venue attracted a wide variety of acts looking for a change from the New York City concert spaces across ...
*
General relativity
General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
*
Einstein field equations
In the General relativity, general theory of relativity, the Einstein field equations (EFE; also known as Einstein's equations) relate the geometry of spacetime to the distribution of Matter#In general relativity and cosmology, matter within it. ...
*
Magnetohydrodynamics
In physics and engineering, magnetohydrodynamics (MHD; also called magneto-fluid dynamics or hydromagnetics) is a model of electrically conducting fluids that treats all interpenetrating particle species together as a single Continuum ...
*
Vector calculus
Vector calculus or vector analysis is a branch of mathematics concerned with the differentiation and integration of vector fields, primarily in three-dimensional Euclidean space, \mathbb^3. The term ''vector calculus'' is sometimes used as a ...
References
{{DEFAULTSORT:Electromagnetic stress-energy tensor
Tensor physical quantities
Electromagnetism