Isotope separation is the process of concentrating specific
isotope
Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their Atomic nucleus, nuclei) and position in the periodic table (and hence belong to the same chemica ...
s of a
chemical element
A chemical element is a chemical substance whose atoms all have the same number of protons. The number of protons is called the atomic number of that element. For example, oxygen has an atomic number of 8: each oxygen atom has 8 protons in its ...
by removing other isotopes. The use of the
nuclides
Nuclides (or nucleides, from nucleus, also known as nuclear species) are a class of atoms characterized by their number of protons, ''Z'', their number of neutrons, ''N'', and their nuclear energy state.
The word ''nuclide'' was coined by the Am ...
produced is varied. The largest variety is used in research (e.g. in
chemistry
Chemistry is the scientific study of the properties and behavior of matter. It is a physical science within the natural sciences that studies the chemical elements that make up matter and chemical compound, compounds made of atoms, molecules a ...
where atoms of "marker" nuclide are used to figure out reaction mechanisms). By tonnage, separating
natural uranium
Natural uranium (NU or Unat) is uranium with the same isotopic ratio as found in nature. It contains 0.711% uranium-235, 99.284% uranium-238, and a trace of uranium-234 by weight (0.0055%). Approximately 2.2% of its radioactivity comes from ura ...
into
enriched uranium
Enriched uranium is a type of uranium in which the percent composition of uranium-235 (written 235U) has been increased through the process of isotope separation. Naturally occurring uranium is composed of three major isotopes: uranium-238 (23 ...
and
depleted uranium
Depleted uranium (DU), also referred to in the past as Q-metal, depletalloy, or D-38, is uranium with a lower content of the fissile isotope Uranium-235, 235U than natural uranium. The less radioactive and non-fissile Uranium-238, 238U is the m ...
is the largest application. In the following text, mainly uranium enrichment is considered. This process is crucial in the manufacture of uranium fuel for
nuclear power plant
A nuclear power plant (NPP), also known as a nuclear power station (NPS), nuclear generating station (NGS) or atomic power station (APS) is a thermal power station in which the heat source is a nuclear reactor. As is typical of thermal power st ...
s and is also required for the creation of uranium-based
nuclear weapon
A nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either fission (fission or atomic bomb) or a combination of fission and fusion reactions (thermonuclear weapon), producing a nuclear exp ...
s (unless
uranium-233
Uranium-233 ( or U-233) is a fissile isotope of uranium that is bred from thorium-232 as part of the thorium fuel cycle. Uranium-233 was investigated for use in nuclear weapons and as a Nuclear fuel, reactor fuel. It has been used successfully ...
is used). Plutonium-based weapons use
plutonium
Plutonium is a chemical element; it has symbol Pu and atomic number 94. It is a silvery-gray actinide metal that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibits six allotropes and four ...
produced in a nuclear reactor, which must be operated in such a way as to produce plutonium already of suitable isotopic mix or ''grade''.
While chemical elements can be purified through
chemical processes
A chemical substance is a unique form of matter with constant chemical composition and characteristic properties. Chemical substances may take the form of a single element or chemical compounds. If two or more chemical substances can be combine ...
, isotopes of the same element have nearly identical chemical properties which makes this type of separation impractical, except for separation of
deuterium
Deuterium (hydrogen-2, symbol H or D, also known as heavy hydrogen) is one of two stable isotopes of hydrogen; the other is protium, or hydrogen-1, H. The deuterium nucleus (deuteron) contains one proton and one neutron, whereas the far more c ...
.
Techniques
There are three types of isotope separation techniques:
* Those based directly on the
atomic weight
Relative atomic mass (symbol: ''A''; sometimes abbreviated RAM or r.a.m.), also known by the deprecated synonym atomic weight, is a dimensionless physical quantity defined as the ratio of the average mass of atoms of a chemical element in a giv ...
of the isotope.
* Those based on the small differences in chemical
reaction rates produced by different atomic weights.
* Those based on properties not directly connected to atomic weight, such as
nuclear resonances.
The third type of separation is still experimental; practical separation techniques all depend in some way on the atomic mass. It is therefore generally easier to separate isotopes with a larger relative mass difference. For example,
deuterium
Deuterium (hydrogen-2, symbol H or D, also known as heavy hydrogen) is one of two stable isotopes of hydrogen; the other is protium, or hydrogen-1, H. The deuterium nucleus (deuteron) contains one proton and one neutron, whereas the far more c ...
has twice the mass of ordinary (light)
hydrogen
Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
and it is generally easier to purify it than to separate
uranium-235
Uranium-235 ( or U-235) is an isotope of uranium making up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a nuclear chain reaction. It is the only fissile isotope that exists in nat ...
from the more common
uranium-238
Uranium-238 ( or U-238) is the most common isotope of uranium found in nature, with a relative abundance of 99%. Unlike uranium-235, it is non-fissile, which means it cannot sustain a chain reaction in a thermal-neutron reactor. However, it i ...
. On the other extreme, separation of fissile
plutonium-239
Plutonium-239 ( or Pu-239) is an isotope of plutonium. Plutonium-239 is the primary fissile isotope used for the production of nuclear weapons, although uranium-235 is also used for that purpose. Plutonium-239 is also one of the three main iso ...
from the common impurity
plutonium-240
Plutonium-240 ( or Pu-240) is an isotope of plutonium formed when plutonium-239 captures a neutron. The detection of its spontaneous fission led to its discovery in 1944 at Los Alamos and had important consequences for the Manhattan Project.
...
, while desirable in that it would allow the creation of
gun-type fission weapon
Gun-type fission weapons are fission-based nuclear weapons whose design assembles their fissile material into a supercritical mass by the use of the "gun" method: shooting one piece of sub-critical material into another. Although this is someti ...
s from plutonium, is generally agreed to be impractical.
Enrichment cascades
All large-scale isotope separation schemes employ a number of similar stages which produce successively higher concentrations of the desired isotope. Each stage enriches the product of the previous step further before being sent to the next stage. Similarly, the tailings from each stage are returned to the previous stage for further processing. This creates a sequential enriching system called a
cascade
Cascade, or Cascading may refer to:
Science and technology Science
* Air shower (physics), a cascade (particle shower) of subatomic particles and ionized nuclei
** Particle shower, a cascade of secondary particles produced as the result of a high ...
. There are two important factors that characterize the performance of a cascade. The first is the
separation factor
Separation may refer to:
Films
* ''Separation'' (1967 film), a British feature film written by and starring Jane Arden and directed by Jack Bond
* '' La Séparation'', 1994 French film
* '' A Separation'', 2011 Iranian film
* ''Separation'' ( ...
, which is a number greater than 1. The second is the number of required stages to get the desired purity.
Commercial materials
To date, large-scale commercial isotope separation of only three elements has occurred. In each case, the rarer of the two most common isotopes of an element has been concentrated for use in nuclear technology:
*
Uranium
Uranium is a chemical element; it has chemical symbol, symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Ura ...
isotopes have been separated to prepare
enriched uranium
Enriched uranium is a type of uranium in which the percent composition of uranium-235 (written 235U) has been increased through the process of isotope separation. Naturally occurring uranium is composed of three major isotopes: uranium-238 (23 ...
for use as
nuclear reactor
A nuclear reactor is a device used to initiate and control a Nuclear fission, fission nuclear chain reaction. They are used for Nuclear power, commercial electricity, nuclear marine propulsion, marine propulsion, Weapons-grade plutonium, weapons ...
fuel and in
nuclear weapons
A nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either nuclear fission, fission (fission or atomic bomb) or a combination of fission and nuclear fusion, fusion reactions (thermonuclear weap ...
.
*
Hydrogen
Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
isotopes have been separated to prepare
heavy water
Heavy water (deuterium oxide, , ) is a form of water (molecule), water in which hydrogen atoms are all deuterium ( or D, also known as ''heavy hydrogen'') rather than the common hydrogen-1 isotope (, also called ''protium'') that makes up most o ...
for use as a moderator in nuclear reactors.
**
Tritium
Tritium () or hydrogen-3 (symbol T or H) is a rare and radioactive isotope of hydrogen with a half-life of ~12.33 years. The tritium nucleus (t, sometimes called a ''triton'') contains one proton and two neutrons, whereas the nucleus of the ...
is both a nuisance in the coolant / moderator of water moderated reactors and a valuable product; it is thus sometimes separated from the coolant.
*
Lithium-6
Naturally occurring lithium (3Li) is composed of two stable isotope ratio, stable isotopes, lithium-6 (6Li) and lithium-7 (7Li), with the latter being far more abundant on Earth. Both of the natural isotopes have an unexpectedly low nuclear bin ...
has been concentrated for use in
thermonuclear weapons
A thermonuclear weapon, fusion weapon or hydrogen bomb (H-bomb) is a second-generation nuclear weapon design. Its greater sophistication affords it vastly greater destructive power than first-generation nuclear bombs, a more compact size, a lowe ...
. Tritium is commonly produced from lithium-6 which is often enriched for this purpose.
Some isotopically purified elements are used in smaller quantities for specialist applications, especially in the semiconductor industry, where purified
silicon
Silicon is a chemical element; it has symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic lustre, and is a tetravalent metalloid (sometimes considered a non-metal) and semiconductor. It is a membe ...
is used to improve crystal structure and
thermal conductivity
The thermal conductivity of a material is a measure of its ability to heat conduction, conduct heat. It is commonly denoted by k, \lambda, or \kappa and is measured in W·m−1·K−1.
Heat transfer occurs at a lower rate in materials of low ...
, and carbon with greater isotopic purity to make diamonds with greater thermal conductivity.
Isotope separation is an important process for both peaceful and military nuclear technology, and therefore the capability that a nation has for isotope separation is of extreme interest to the intelligence community.
Alternatives
The only alternative to isotope separation is to manufacture the required isotope in its pure form. This may be done by irradiation of a suitable target, but care is needed in target selection and other factors to ensure that only the required isotope of the element of interest is produced. Isotopes of other elements are not so great a problem as they can be removed by chemical means.
This is particularly relevant in the preparation of high-grade
plutonium-239
Plutonium-239 ( or Pu-239) is an isotope of plutonium. Plutonium-239 is the primary fissile isotope used for the production of nuclear weapons, although uranium-235 is also used for that purpose. Plutonium-239 is also one of the three main iso ...
for use in weapons. It is not practical to separate Pu-239 from Pu-240 or Pu-241.
Fissile
In nuclear engineering, fissile material is material that can undergo nuclear fission when struck by a neutron of low energy. A self-sustaining thermal Nuclear chain reaction#Fission chain reaction, chain reaction can only be achieved with fissil ...
Pu-239 is produced following neutron capture by uranium-238, but further neutron capture will produce
Pu-240 which is less fissile and worse, is a fairly strong neutron emitter, and
Pu-241 which decays to
Am-241, a strong alpha emitter that poses self-heating and radiotoxicity problems. Therefore, the uranium targets used to produce military plutonium must be irradiated for only a short time, to minimise the production of these unwanted isotopes. Conversely, blending plutonium with Pu-240 renders it less suitable for nuclear weapons.
If the desired goal is not an atom bomb but running a nuclear power plant, the alternative to enrichment of uranium for use in a
light-water reactor
The light-water reactor (LWR) is a type of thermal-neutron reactor that uses normal water, as opposed to heavy water, as both its coolant and neutron moderator; furthermore a solid form of fissile elements is used as fuel. Thermal-neutron reacto ...
is the use of a
neutron moderator
In nuclear engineering, a neutron moderator is a medium that reduces the speed of fast neutrons, ideally without capturing any, leaving them as thermal neutrons with only minimal (thermal) kinetic energy. These thermal neutrons are immensely ...
with a lower neutron absorption cross section than
protium. Options include
heavy water
Heavy water (deuterium oxide, , ) is a form of water (molecule), water in which hydrogen atoms are all deuterium ( or D, also known as ''heavy hydrogen'') rather than the common hydrogen-1 isotope (, also called ''protium'') that makes up most o ...
as used in
CANDU
The CANDU (CANada Deuterium Uranium) is a Canadian pressurized heavy-water reactor design used to generate electric power. The acronym refers to its deuterium oxide (heavy water) neutron moderator, moderator and its use of (originally, natural ...
type reactors or
graphite
Graphite () is a Crystallinity, crystalline allotrope (form) of the element carbon. It consists of many stacked Layered materials, layers of graphene, typically in excess of hundreds of layers. Graphite occurs naturally and is the most stable ...
as used in
magnox
Magnox is a type of nuclear power / production reactor that was designed to run on natural uranium with graphite as the moderator and carbon dioxide gas as the heat exchange coolant. It belongs to the wider class of gas-cooled reactors. The ...
or
RBMK
The RBMK (, РБМК; ''reaktor bolshoy moshchnosti kanalnyy'', "high-power channel-type reactor") is a class of graphite moderated reactor, graphite-moderated nuclear reactor, nuclear power reactor designed and built by the Soviet Union. It is so ...
reactors. Obtaining heavy water however also requires isotope separation, in this case of hydrogen isotopes, which is easier due to the bigger variation in atomic weight. Both magnox and RBMK reactors had undesirable properties when run with
natural uranium
Natural uranium (NU or Unat) is uranium with the same isotopic ratio as found in nature. It contains 0.711% uranium-235, 99.284% uranium-238, and a trace of uranium-234 by weight (0.0055%). Approximately 2.2% of its radioactivity comes from ura ...
, which ultimately led to the replacement of this fuel with low enriched uranium, negating the advantage of foregoing enrichment.
Pressurized heavy-water reactor
A pressurized heavy-water reactor (PHWR) is a nuclear reactor that uses heavy water (deuterium oxide D2O) as its coolant and neutron moderator. PHWRs frequently use natural uranium as fuel, but sometimes also use very low enriched uranium. The h ...
s such as the CANDU are still in active use and
India
India, officially the Republic of India, is a country in South Asia. It is the List of countries and dependencies by area, seventh-largest country by area; the List of countries by population (United Nations), most populous country since ...
which has limited domestic uranium resources and been under a partial nuclear embargo ever since
it became an atom bomb state in particular relies on heavy water moderated reactors for its nuclear power. A big downside of heavy water reactors is the enormous upfront cost of the heavy water.
Methodology
Diffusion
Often done with gases, but also with liquids, the
diffusion
Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical p ...
method relies on the fact that in thermal equilibrium, two isotopes with the same energy will have different average velocities. The lighter atoms (or the molecules containing them) will travel more quickly through a membrane, whose pore diameters are not larger than the mean free path length (
Knudsen flow). The speed ratio is equal to the inverse square root of the mass ratio, so the amount of separation is small. For example for
235UF
6 versus
238UF
6 it is 1.0043. Hence many cascaded stages are needed to obtain high purity. This method is expensive due to the work needed to push gas through a membrane and the many stages necessary, each requiring recompression of the gas.
The first large-scale separation of uranium isotopes was achieved by the United States in large
gaseous diffusion
Gaseous diffusion is a technology that was used to produce enriched uranium by forcing gaseous uranium hexafluoride (UF6) through microporous membranes. This produces a slight separation (enrichment factor 1.0043) between the molecules containi ...
separation plants at
Clinton Engineering Works, which were established as part of the
Manhattan Project
The Manhattan Project was a research and development program undertaken during World War II to produce the first nuclear weapons. It was led by the United States in collaboration with the United Kingdom and Canada.
From 1942 to 1946, the ...
. These used
uranium hexafluoride gas as the process fluid. Nickel powder and electro-deposited nickel mesh diffusion barriers were pioneered by Edward Adler and Edward Norris.
Due to the high energy consumption, enrichment of uranium by diffusion was gradually replaced by more efficient methods.
The last diffusion plant closed in 2013. The
Paducah Gaseous Diffusion Plant was a US government effort to generate highly enriched uranium to power military reactors and create nuclear bombs which led to the establishment of the facility in 1952. Paducah's enrichment was initially kept to low levels, and the facility operated as a "feed facility" for other defence facilities that processed the enriched uranium at
Oak Ridge National Laboratory
Oak Ridge National Laboratory (ORNL) is a federally funded research and development centers, federally funded research and development center in Oak Ridge, Tennessee, United States. Founded in 1943, the laboratory is sponsored by the United Sta ...
in
Oak Ridge, Tennessee
Oak Ridge is a city in Anderson County, Tennessee, Anderson and Roane County, Tennessee, Roane counties in the East Tennessee, eastern part of the U.S. state of Tennessee, about west of downtown Knoxville, Tennessee, Knoxville. Oak Ridge's po ...
, and
Portsmouth Gaseous Diffusion Plant in
Piketon, Ohio. The goal of Paducah and its sister facility in Piketon was adjusted in the 1960s when they started to enrich uranium for use in commercial nuclear reactors to produce energy.
Centrifugal
Centrifugal schemes rapidly rotate the material allowing the heavier isotopes to go closer to an outer radial wall. This is often done in gaseous form using a
Zippe-type centrifuge
The Zippe-type centrifuge is a gas centrifuge designed to enrich the rare fissile isotope uranium-235 (235U) from the mixture of isotopes found in naturally occurring uranium compounds. The Isotope separation, isotopic separation is based on the sl ...
. Centrifuging
plasma can separate isotopes as well as separating ranges of elements for radioactive waste reduction, nuclear reprocessing, and other purposes. The process is called "plasma mass separation"; the devices are called "plasma mass filter" or "plasma centrifuge" (not to be confused with
medical centrifuges).
The centrifugal separation of isotopes was first suggested by Aston and Lindemann in 1919 and the first successful experiments were reported by Beams and Haynes on isotopes of chlorine in 1936. However attempts to use the technology during the Manhattan Project were unproductive. In modern times it is the main method used throughout the world to enrich uranium and as a result remains a fairly secretive process, hindering a more widespread uptake of the technology. In general a feed of UF
6 gas is connected to a cylinder that is rotated at high speed. Near the outer edge of the cylinder heavier gas molecules containing U-238 collect, while molecules containing U-235 concentrate at the centre and are then fed to another cascade stage.
Use of gaseous centrifugal technology to enrich isotopes is desirable as power consumption is greatly reduced when compared to more conventional techniques such as diffusion plants since fewer cascade steps are required to reach similar degrees of separation. As well as requiring less energy to achieve the same separation, far smaller scale plants are possible, making them an economic possibility for a small nation attempting to produce a nuclear weapon. Pakistan is believed to have used this method in developing its nuclear weapons.
Vortex tubes were used by
South Africa
South Africa, officially the Republic of South Africa (RSA), is the Southern Africa, southernmost country in Africa. Its Provinces of South Africa, nine provinces are bounded to the south by of coastline that stretches along the Atlantic O ...
in their
Helikon vortex separation process. The gas is injected tangentially into a chamber with special geometry that further increases its rotation to a very high rate, causing the isotopes to separate. The method is simple because vortex tubes have no moving parts, but energy intensive, about 50 times greater than gas centrifuges. A similar process, known as ''jet nozzle'' was created in Germany, with a demonstration plant built in Brazil, and they went as far as developing a site to fuel the country's nuclear plants.
Electromagnetic

Electromagnetic separation is
mass spectrometry
Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a ''mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is used ...
on a large scale, so it is sometimes referred to as mass spectrometry. It uses the fact that charged particles are deflected in a
magnetic field
A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
and the amount of deflection depends upon the particle's mass. It is very expensive for the quantity produced, as it has an extremely low throughput, but it can allow very high purities to be achieved. This method is often used for processing small amounts of pure isotopes for research or specific use (such as
isotopic tracer
Isotopic labeling (or isotopic labelling) is a technique used to track the passage of an isotope (an atom with a detectable variation in neutron count) through chemical reaction, metabolic pathway, or a Cell (biology), biological cell. The reactant ...
s) but is impractical for industrial use.
At Oak Ridge National Laboratory and at the
University of California, Berkeley
The University of California, Berkeley (UC Berkeley, Berkeley, Cal, or California), is a Public university, public Land-grant university, land-grant research university in Berkeley, California, United States. Founded in 1868 and named after t ...
,
Ernest O. Lawrence developed electromagnetic separation for much of the uranium used in the
first atomic bombs. Devices using his principle are named
calutron
A calutron is a mass spectrometer originally designed and used for separating the isotopes of uranium. It was developed by Ernest Lawrence during the Manhattan Project and was based on his earlier invention, the cyclotron. Its name was derive ...
s. After the war the method was largely abandoned as impractical. It had only been undertaken (along with diffusion and other technologies) to guarantee there would be enough material for use, whatever the cost. Its main eventual contribution to the war effort was to further concentrate material from the gaseous diffusion plants to higher levels of purity.
Laser
In this method a
laser
A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word ''laser'' originated as an acronym for light amplification by stimulated emission of radi ...
is tuned to a wavelength which excites only one isotope of the material and ionizes those atoms preferentially. For atoms, the resonant absorption of light for an isotope depends on
* the nuclear mass (noticeable mainly with light elements)
* the nuclear volume (causing a deviation from the
Coulomb potential
Electric potential (also called the ''electric field potential'', potential drop, the electrostatic potential) is defined as electric potential energy per unit of electric charge. More precisely, electric potential is the amount of work (physic ...
, noticeable for heavier elements)
*
hyperfine splitting of electronic transitions, if the nucleus has a spin,
allowing finely tuned lasers to interact with only one isotope. After the atom is ionized it can be removed from the sample by applying an
electric field
An electric field (sometimes called E-field) is a field (physics), physical field that surrounds electrically charged particles such as electrons. In classical electromagnetism, the electric field of a single charge (or group of charges) descri ...
. This method is often abbreviated as AVLIS (
atomic vapor laser isotope separation). This method has only been developed as laser technology has improved in the 1970s to 1980s. Attempts to develop it to an industrial scale for uranium enrichment were successively given up in the 1990s "due to never ending technical difficulties" and because centrifuges have reached technical maturity in the meantime. However, it is a major concern to those in the field of
nuclear proliferation
Nuclear proliferation is the spread of nuclear weapons to additional countries, particularly those not recognized as List of states with nuclear weapons, nuclear-weapon states by the Treaty on the Non-Proliferation of Nuclear Weapons, commonl ...
, because it may be cheaper and more easily hidden than other methods of isotope separation.
Tunable laser
A tunable laser is a laser whose wavelength of operation can be altered in a controlled manner. While all active laser medium, laser gain media allow small shifts in output wavelength, only a few types of lasers allow continuous tuning over a sign ...
s used in AVLIS include the
dye laser and more recently
diode laser
The laser diode chip removed and placed on the eye of a needle for scale
A laser diode (LD, also injection laser diode or ILD or semiconductor laser or diode laser) is a semiconductor device similar to a light-emitting diode in which a diode p ...
s.
A second method of laser separation is known as
molecular laser isotope separation
Molecular laser isotope separation (MLIS) is a method of isotope separation, where specially tunable laser, tuned lasers are used to separate isotopes of uranium using selective ionization of hyperfine transitions of uranium hexafluoride molecules. ...
(MLIS). In this method, an infrared laser is directed at
uranium hexafluoride gas (if enrichment of uranium is desired), exciting molecules that contain a
U-235
Uranium-235 ( or U-235) is an isotope of uranium making up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a nuclear chain reaction. It is the only fissile isotope that exists in nat ...
atom. A second laser, either also in the IR (
infrared multiphoton dissociation
Infrared multiple photon dissociation (IRMPD) is a technique used in mass spectrometry to fragment molecules in the gas phase usually for structural analysis of the original (parent) molecule.
How it works
An infrared laser is directed through ...
) or in the UV, frees a
fluorine
Fluorine is a chemical element; it has Chemical symbol, symbol F and atomic number 9. It is the lightest halogen and exists at Standard temperature and pressure, standard conditions as pale yellow Diatomic molecule, diatomic gas. Fluorine is extre ...
atom, leaving
uranium pentafluoride which then precipitates out of the gas. Cascading the MLIS stages is more difficult than with other methods because the UF
5 must be fluorinated back to UF
6 before being introduced into the next MLIS stage. But with light elements, the isotope selectivity is usually good enough that cascading is not required.
Several alternative MLIS schemes have been developed. For example, one uses a first laser in the near-infrared or visible region, where a selectivity of over 20:1 can be obtained in a single stage. This method is called OP-IRMPD (Overtone Pre-excitation—
IR Multiple Photon Dissociation). But due to the small absorption probability in the overtones, too many photons remain unused, so that the method did not reach industrial feasibility. Also some other MLIS methods suffer from wasting of the expensive photons.
Finally, the '
Separation of isotopes by laser excitation' (SILEX) process, developed by
Silex Systems
Separation of isotopes by laser excitation (SILEX) is a process for enriching uranium to fuel nuclear reactors that may also present a growing nuclear weapons proliferation risk. It is strongly suspected that SILEX utilizes laser condensation repre ...
in Australia, has been licensed to General Electric for the development of a pilot enrichment plant. For uranium, it uses a cold molecular beam with UF
6 in a carrier gas, in which the
235UF
6 is selectively excited by an infrared laser near 16 μm. In contrast to the excited molecules, the nonexcited heavier isotopic molecules tends to form clusters with the carrier gas, and these clusters stay closer to the axis of the molecular beam, so that they can pass a skimmer and are thus separated from the excited lighter isotope.
Quite recently yet another scheme has been proposed for the
deuterium
Deuterium (hydrogen-2, symbol H or D, also known as heavy hydrogen) is one of two stable isotopes of hydrogen; the other is protium, or hydrogen-1, H. The deuterium nucleus (deuteron) contains one proton and one neutron, whereas the far more c ...
separation using Trojan wavepackets in circularly polarized electromagnetic field. The process of
Trojan wave packet formation by the adiabatic-rapid passage depends in ultra-sensitive way on the
reduced electron and nucleus mass which with the same field frequency further leads to excitation of Trojan or anti-Trojan wavepacket depending on the kind of the isotope. Those and their giant, rotating
electric dipole moment
The electric dipole moment is a measure of the separation of positive and negative electrical charges within a system: that is, a measure of the system's overall Chemical polarity, polarity. The International System of Units, SI unit for electric ...
s are then
-shifted in phase and the beam of such atoms splits in the gradient of the electric field in the analogy to
Stern–Gerlach experiment
In quantum physics, the Stern–Gerlach experiment demonstrated that the spatial orientation of angular momentum is quantization (physics), quantized. Thus an Atomic spacing, atomic-scale system was shown to have intrinsically quantum propertie ...
.
Chemical methods
Although isotopes of a single element are normally described as having the same chemical properties, this is not strictly true. In particular,
reaction rate
The reaction rate or rate of reaction is the speed at which a chemical reaction takes place, defined as proportional to the increase in the concentration of a product per unit time and to the decrease in the concentration of a reactant per u ...
s are very slightly affected by atomic mass.
Techniques using this are most effective for light atoms such as hydrogen. Lighter isotopes tend to react or
evaporate
Evaporation is a type of vaporization that occurs on the surface of a liquid as it changes into the gas phase. A high concentration of the evaporating substance in the surrounding gas significantly slows down evaporation, such as when hum ...
more quickly than heavy isotopes, allowing them to be separated. This is how
heavy water
Heavy water (deuterium oxide, , ) is a form of water (molecule), water in which hydrogen atoms are all deuterium ( or D, also known as ''heavy hydrogen'') rather than the common hydrogen-1 isotope (, also called ''protium'') that makes up most o ...
is produced commercially, see
Girdler sulfide process for details. Lighter isotopes also disassociate more rapidly under an electric field. This process in a large
cascade
Cascade, or Cascading may refer to:
Science and technology Science
* Air shower (physics), a cascade (particle shower) of subatomic particles and ionized nuclei
** Particle shower, a cascade of secondary particles produced as the result of a high ...
was used at the heavy water production plant at
Rjukan
Rjukan () is a List of towns and cities in Norway, town in Tinn Municipality in Telemark county, Norway. The town is also the administrative centre of Tinn Municipality. The town is located in the Vestfjorddalen valley, between the lakes Møsvatn ...
.
One candidate for the largest
kinetic isotopic effect ever measured at room temperature, 305, may eventually be used for the separation of
tritium
Tritium () or hydrogen-3 (symbol T or H) is a rare and radioactive isotope of hydrogen with a half-life of ~12.33 years. The tritium nucleus (t, sometimes called a ''triton'') contains one proton and two neutrons, whereas the nucleus of the ...
(T). The effects for the oxidation of tritiated
formate
Formate (IUPAC name: methanoate) is the conjugate base of formic acid. Formate is an anion () or its derivatives such as ester of formic acid. The salts and esters are generally colorless.
Fundamentals
When dissolved in water, formic acid co ...
anions to HTO were measured as:
:
Distillation
Isotopes of hydrogen, carbon, oxygen, and nitrogen can be enriched by distilling suitable light compounds over long
columns
A column or pillar in architecture and structural engineering is a structural element that transmits, through compression, the weight of the structure above to other structural elements below. In other words, a column is a compression member ...
. The separation factor is the ratio of vapor pressures of two isotopic molecules. In equilibrium such a separation results at each
theoretical plate
A theoretical plate in many separation processes is a hypothetical zone or stage in which two phases, such as the liquid and vapor phases of a substance, establish an equilibrium with each other. Such equilibrium stages may also be referred to as ...
of the column and is multiplied by the same factor in the next step (at the next plate). Because the elementary separation factor is small, a large number of such plates is needed. This requires total column heights of 20 to 300 m.
The lower vapor pressure of the heavier molecule is due to its higher
energy of vaporization, which in turn results from its lower energy of zero-point vibration in the intermolecular potential. As expected from formulas for vapor pressure, the ratio becomes more favorable at lower temperatures (lower pressures). The vapor pressure ratio for H
2O to D
2O is 1.055 at 50 °C (123 mbar) and 1.026 at 100 °C (1013 mbar). For
12CO to
13CO it is 1.007 near the normal boiling point (81.6 K), and 1.003 for
12CH
4 to
13CH
4 near 111.7 K (boiling point).
The
13C enrichment by (
cryogenic
In physics, cryogenics is the production and behaviour of materials at very low temperatures.
The 13th International Institute of Refrigeration's (IIR) International Congress of Refrigeration (held in Washington, DC in 1971) endorsed a univers ...
) distillation was developed in the late 1960s by scientists at Los Alamos National Laboratory. It is still the preferred method for
13C enrichment. Deuterium enrichment by water distillation is only done, if it was preenriched by a process (chemical exchange) with lower energy demand. Beginning with the low natural abundance (0.015% D) would require evaporation of too large quantities of water.
Separative work unit
Separative work unit
Separative work – the amount of separation done by a Enriched_uranium, Uranium enrichment process – is a function of the concentrations of the feedstock, the enriched output, and the depleted tailings; and is expressed in units which are so c ...
(SWU) is a complex unit which is a function of the amount of uranium processed and the degree to which it is enriched, ''i.e.'' the extent of increase in the concentration of the U-235 isotope relative to the remainder.
The unit is strictly: kilogram separative work unit, and it measures the quantity of separative work (indicative of energy used in enrichment) when feed and product quantities are expressed in kilograms. The effort expended in separating a mass ''F'' of feed of assay ''xf'' into a mass ''P'' of product assay xp and waste of mass ''W'' and assay ''xw'' is expressed in terms of the number of separative work units needed, given by the expression SWU = ''WV''(''xw'') + ''PV''(''xp'') - ''FV''(''xf''), where ''V''(''x'') is the "value function," defined as ''V''(''x'') = (1 - 2''x'') ln ((1 - ''x'') /''x'').
Separative work is expressed in SWUs, kg SW, or kg UTA (from the German ''Urantrennarbeit'' )
* 1 SWU = 1 kg SW = 1 kg UTA
* 1 kSWU = 1.0 t SW = 1 t UTA
* 1 MSWU = 1 kt SW = 1 kt UTA
If, for example, for 100 kilograms (220 pounds) of natural uranium, it takes about 60 SWU to produce 10 kilograms (22 pounds) of uranium enriched in U-235 content to 4.5%.
Isotope separators for research
Radioactive beams of specific isotopes are widely used in the fields of experimental physics, biology and materials science. The production and formation of these radioactive atoms into an ionic beam for study is an entire field of research carried out at many laboratories throughout the world. The first isotope separator was developed at the Copenhagen Cyclotron by Bohr and coworkers using the principle of electromagnetic separation. Today, there are many laboratories around the world that supply beams of radioactive ions for use.
Arguably the principal Isotope Separator On Line (ISOL) is ISOLDE at CERN, which is a joint European facility spread across the Franco-Swiss border near the city of Geneva. This laboratory uses mainly proton spallation of uranium carbide targets to produce a wide range of radioactive fission fragments that are not found naturally on earth. During spallation (bombardment with high energy protons), a uranium carbide target is heated to several thousand degrees so that radioactive atoms produced in the nuclear reaction are released.
Once out of the target, the vapour of radioactive atoms travels to an ionizer cavity. This ionizer cavity is a thin tube made of a refractory metal with a high
work function
In solid-state physics, the work function (sometimes spelled workfunction) is the minimum thermodynamic work (i.e., energy) needed to remove an electron from a solid to a point in the vacuum immediately outside the solid surface. Here "immediately" ...
allowing for collisions with the walls to liberate a single electron from a free atom (
surface ionization
Thermal ionization, also known as surface ionization or contact ionization, is a physical process whereby the atoms are desorbed from a hot surface, and in the process are ionized.
Thermal ionization is used to make simple ion sources, for mass ...
effect). Once ionized, the radioactive species are accelerated by an electrostatic field and injected into an electromagnetic separator. As ions entering the separator are of approximately equal energy, those ions with a smaller mass will be deflected by the magnetic field by a greater amount than those with a heavier mass. This differing radius of curvature allows for isobaric purification to take place.
Once purified isobarically, the ion beam is then sent to the individual experiments. In order to increase the purity of the isobaric beam, laser ionization can take place inside the ionizer cavity to selectively ionize a single element chain of interest. At CERN, this device is called the Resonance Ionization Laser Ion Source (RILIS). Currently over 60% of all experiments opt to use the RILIS to increase the purity of radioactive beams.
Beam production capability
As the production of radioactive atoms by the ISOL technique depends on the free atom chemistry of the element to be studied, there are certain beams which cannot be produced by simple proton bombardment of thick actinide targets.
Refractory
In materials science, a refractory (or refractory material) is a material that is resistant to decomposition by heat or chemical attack and that retains its strength and rigidity at high temperatures. They are inorganic, non-metallic compound ...
metals such as tungsten and rhenium do not emerge from the target even at high temperatures due to their low vapour pressure. In order to produce these types of beams, a thin target is required. The Ion Guide Isotope Separator On Line (IGISOL) technique was developed in 1981 at the University of Jyväskylä
cyclotron
A cyclotron is a type of particle accelerator invented by Ernest Lawrence in 1929–1930 at the University of California, Berkeley, and patented in 1932. Lawrence, Ernest O. ''Method and apparatus for the acceleration of ions'', filed: Januar ...
laboratory in
Finland
Finland, officially the Republic of Finland, is a Nordic country in Northern Europe. It borders Sweden to the northwest, Norway to the north, and Russia to the east, with the Gulf of Bothnia to the west and the Gulf of Finland to the south, ...
. In this technique, a thin uranium target is bombarded with protons and nuclear reaction products recoil out of the target in a charged state. The recoils are stopped in a gas cell and then exit through a small hole in the side of the cell where they are accelerated electrostatically and injected into a mass separator. This method of production and extraction takes place on a shorter timescale compared to the standard ISOL technique and isotopes with short half-lives (sub millisecond) can be studied using an IGISOL. An IGISOL has also been combined with a laser ion source at the Leuven Isotope Separator On Line (LISOL) in Belgium.
Thin target sources generally provide significantly lower quantities of radioactive ions than thick target sources and this is their main drawback.
As experimental nuclear physics progresses, it is becoming more and more important to study the most exotic of radioactive nuclei. In order to do so, more inventive techniques are required to create nuclei with extreme proton/neutron ratios. An alternative to the ISOL techniques described here is that of fragmentation beams, where the radioactive ions are produced by fragmentation reactions on a fast beam of stable ions impinging on a thin target (usually of beryllium atoms). This technique is used, for example, at the
Facility for Rare Isotope Beams
The Facility for Rare Isotope Beams (FRIB) is a scientific user facility for nuclear science, funded by the U.S. Office of Science, Department of Energy Office of Science (DOE-SC), Michigan State University (MSU), and the State of Michigan. Mi ...
(FRIB) at Michigan State University and at the
Radioactive Isotope Beam Factory (RIBF) at
RIKEN
is a national scientific research institute in Japan. Founded in 1917, it now has about 3,000 scientists on seven campuses across Japan, including the main site at Wakō, Saitama, Wakō, Saitama Prefecture, on the outskirts of Tokyo. Riken is a ...
, in Japan.
References
External links
Utilization of kinetic isotope effects for the concentration of tritium GM Brown, TJ Meyer et al., 2001.
{{Webarchive, url=https://web.archive.org/web/20101202112400/http://world-nuclear.org/info/inf28.html , date=2010-12-02 from the
World Nuclear Association
World Nuclear Association is the international organization that promotes nuclear power and supports the companies that comprise the global nuclear industry. Its members come from all parts of the nuclear fuel cycle, including uranium mining ...
Annotated bibliography on electromagnetic separation of uranium isotopes form the Alsos Digital Library
German inventions