Early history of the field
Scholars, such as Herbert Walberg and Geneva Haertel, trace the beginning of Educational neuroscience to the era between 1800 and 1850 when the scientific study of sense organs began to make advancements. It was during this time thatThe need for a new discipline
The emergence of educational neuroscience has been born out of the need for a new discipline that makes scientific research practically applicable in an educational context. Addressing the broader field of "mind, brain and education", Kurt Fischer states, "The traditional model will not work. It is not enough for researchers to collect data in schools and make those data and the resulting research papers available to educators", as this method excludes teachers and learners from contributing to the formation of appropriate research methods and questions. Learning in cognitive psychology and neuroscience has focused on how individual humans and other species have evolved to extract useful information from the natural and social worlds around them. By contrast, education, and especially modern formal education, focuses on descriptions and explanations of the world that learners cannot be expected to acquire by themselves. In this way, learning in the scientific sense, and learning in the educational sense can be seen as complementary concepts. This creates a new challenge for cognitive neuroscience to adapt to the real world practical requirements of educational learning. Conversely, neuroscience creates a new challenge for education, because it provides new characterizations of the current state of the learner—including brain state, genetic state, and hormonal state—that could be relevant to learning and teaching. By providing new measures of the effects of learning and teaching, including brain structure and activity, it is possible to discriminate different types of learning method and attainment. For example, neuroscience research can already distinguish learning by rote from learning through conceptual understanding in mathematics. TheEarly brain development
Almost all of the neurons in the brain are generated before birth, during the first three months of pregnancy, and the newborn child's brain has a similar number of neurons to that of an adult. Many more neurons form than are needed, and only those that form active connections with other neurons survive. In the first year after birth the infant brain undergoes an intense phase of development, during which excessive numbers of connections between neurons are formed, and many of these excess connections must be cut back through the process ofCan neuroscience inform education?
Although an increasing number of researchers are seeking to establish educational neuroscience as a productive field of research, debate still continues with regards to the potential for practical collaboration between the fields of neuroscience and education, and whether neuroscientific research really has anything to offer educators. Daniel Willingham states that "whether neuroscience can be informative to educational theory and practice is not debatable-it has been." He draws attention to the fact that behavioural research alone was not decisive in determining whether developmental dyslexia was a disorder of primarily visual or phonological origin. Neuroimaging research was able to reveal reduced activation for children with dyslexia in brain regions known to support phonological processing, thus supporting behavioural evidence for the phonological theory of dyslexia. While John Bruer suggests that the link between neuroscience and education is essentially impossible without a third field of research to link the two, other researchers feel that this view is too pessimistic. While acknowledging that more bridges must be built between basic neuroscience and education, and that so called neuromyths (see below) must be deconstructed, Usha Goswami suggests that cognitive developmental neuroscience has already made several discoveries of use to education, and has also led to the discovery of ‘neural markers’ that can be used to assess development. In other words, milestones of neural activity or structure are being established, against which an individual can be compared in order to assess their development. For example,Neuroscience and education: Sample cases
Language and literacy
Human language is a unique faculty of the mind and the ability to understand and produce oral and written language is fundamental to academic achievement and attainments. Children who experience difficulties with oral language raise significant challenges for educational policy and practice; National Strategies, Every Child a Talker (2008). The difficulties are likely to persist during the primary school years where, in addition to core deficits with oral language, children experience problems with literacy, numeracy and behaviour and peer relations. Early identification and intervention to address these difficulties, as well as identification of the ways in which learning environments can support atypical language development are essential. Untreated speech and language needs result in significant costs both to the individual and to the national economy (ICAN, 2006). Over the last decade, there has been a significant increase in neuroscience research examining young children's processing of language at the phonetic, word, and sentence levels. There are clear indications that neural substrates for all levels of language can be identified at early points in development. At the same time, intervention studies have demonstrated the ways in which the brain retains its plasticity for language processing. Intense remediation with an auditory language processing program has been accompanied by functional changes in left temporo-parietal cortex and inferior frontal gyrus. However, the extent to which these results generalize to spoken and written language is debated. The relationships between meeting the educational needs of children with language difficulties and the findings of neuroscience studies are not yet established. One concrete avenue for progress is to use neuroscientific methods to address questions that are significant to practice in learning environments. For example, the extent to which language skills are attributable to a single common trait, and the consistency of such a trait over development, are matters of debate. However, direct assessments of brain activity can inform these debates. A detailed understanding of the sub-components of the language system, and the ways these change over time may inevitably yield implications for educational practice.Mathematics
Mathematical skills are important not only for the national economy but also for an individual's life chances: low numeracy increases the probability of arrest, depression, physical illnesses, unemployment. One of the main causes of low numeracy is a congenital condition called dyscalculia. As the Foresight report on Mental Capital and Wellbeing puts it, "Developmental dyscalculia – because of its low profile but high impacts, its priority should be raised. Dyscalculia relates to numeracy and affects between 4–7% of children. It has a much lower profile than dyslexia but can also have substantial impacts: it can reduce lifetime earnings by £114,000 and reduce the probability of achieving five or moreSocial and emotional cognition
In the last 10 years, there has been an explosion of interest in the role of emotional abilities and characteristics in contributing to success in all aspects of life. The concept ofAttention and executive control
Attention refers to the brain mechanisms that allow us to focus on particular aspects of the sensory environment to the relative exclusion of others. Attention modulates sensory processing in "top-down" fashion. Maintaining selective attention toward a particular item or person for a prolonged period is clearly a critical underpinning skill for the classroom. Attention is the key cognitive skill impaired in ADHD resulting in difficulty in completing tasks or attending to details. Aspects of attention may also be atypical in children showing anti-social behaviour and conduct disorders. From the perspective of basic neuroscience, recent evidence suggests that attention skills may be one of the human brain functions that respond best to early intervention and training (e.g.). Further, from a neuroconstructivist perspective attention is a vital mechanism through which the child can actively select particular aspects of their environment for further learning. Executive functions include the abilities to inhibit unwanted information or responses, to plan ahead for a sequence of mental steps or actions, and to retain task-relevant and changing information for brief periods (working memory). Like attention, executive function abilities provide a critical platform for the acquisition of domain-specific knowledge and skills in an educational context. Further, recent studies show that preschool training of executive skills may prevent early school failure. Children with ADHD, anti-social behaviour, conduct disorders and autism can all show atypical patterns of executive function. Basic neuroscience studies have identified the primary brain structures and circuits involved in executive functions, including the prefrontal cortex, in adults. However, much research remains to be done to understand the development of this circuitry, and the genetic and neural bases of individual differences in executive function. Foresight Mental Capital and Wellbeing Project specifically identifies and highlights the importance of attention and executive function skills in the future challenges for difficulties in learning (sections 2.2.4 and 2.4 in "Learning Difficulties: Future Challenges").Neuroscience and education: A bridge too far?
Despite optimism from many who believe that neuroscience can make a meaningful contribution to education and that the potential exists for the establishment of a research field of educational neuroscience, some researchers believe that the differences between the two disciplines are too great for them to ever be directly linked in a practically meaningful way. In 1997 John Bruer published a major critique of what he called the "Neuroscience and education argument". The ‘neuroscience and education argument’ as Bruer defines it, stems from three major findings in developmental neurobiology. # Early childhood is characterised by rapid growth in the number of synapses in the brain (synaptogenesis), and this expansion is followed by a pruning period. # There are so called experience dependant critical periods during which the developing brain is best suited to develop certain sensory and motor skills. # A stimulus rich environment causes greater synaptogenesis. The essential argument is that children are capable of learning more at an early age when they have an excess of synaptic growth and peak brain activity. The knowledge of early brain development afforded by neurobiology has been used to support various arguments with regards to education. For example, the idea that any subject can be taught to young children in some intellectually honest form, due to the great adaptability and learning potential of the young brain. Alternatively, the idea that critical periods exist for learning certain skills or knowledge sets appeals to the fact that in animal studies, if the developing brain is deprived of certain sensory inputs, the brain areas responsible for processing those inputs fail to develop fully later in development, and thus "if you miss the window, you are playing with a handicap". One of Bruer's major points of contention with reports in favour of neuroscience and education is the lack of actual neuroscience evidence. Reports such as Years of Promise: A Comprehensive Learning Strategy for America's Children (Carnegie Corporation of New York, 1996) cite many cognitive and behavioural psychology studies, but no more than a handful of brain based studies, and yet draws dramatic inferences with regards to the role of the brain in learning. Bruer argues that behavioural science can provide a basis for informing educational policy, but the link to neuroscience is "a bridge too far", and the limitations of the application of neuroscience to education stem from the limitations of neuroscience knowledge itself. Bruer supports his critique by arguing the limitations of current knowledge regarding the three key tenets of the neuroscience and education argument. See Neuromyths. Another problem is the discrepancy between spatial resolution of imaging methods and the spatial resolution of synaptic changes that are suggested to underlie learning processes. A similar problem is true with regards to the temporal resolution. This makes it hard to relate subcomponents of cognitive skills to brain function. However, the primary flaw of the education neuroscience argument in Bruer's opinion is that it attempts to link what happens at the synaptic level to higher order learning and instruction. The terminology, "Mind, brain and education" alludes to the idea that if we cannot bridge education and neuroscience directly, then we can use two existing connections to inform education. These are the link between cognitive psychology and education, and between cognitive psychology and neuroscience. Bruer contends that neuroscience in its current form has little to offer educators at the practical level. Cognitive science on the other hand, can serve as a basis for the development of an applied science of learning and education. Other researchers have suggested alternative bridges to the cognitive psychology suggested by Bruer. Mason suggests that the gap between education and neuroscience can be best bridged by educational psychology, which she outlines as being concerned with "developing descriptive, interpretive and prescriptive models of student learning and other educational phenomena".Challenges to educational neuroscience
Despite Willingham's assertion that the potential for neuroscience to contribute to educational practice and theory is already beyond doubt, he highlights three challenges that must be overcome to marry the two disciplines effectively. The Goals Problem: Willingham suggests that education is a so-called "artificial science" that seeks to construct an ‘artifact’, in this case a set of pedagogic strategies and materials. Neuroscience, on the other hand is a so-called "natural science", concerned with the discovery of natural principles that describe neural structure and function. This difference means that some goals set by education are simply impossible to answer using neuroscience research, for example, the building of character or aesthetic sense in children. The Vertical Problem: Levels of analysis: Willingham suggests that the highest level of analysis employed by neuroscientists is the mapping of brain structure and activity onto cognitive function, or even the interaction of cognitive functions (i.e. the impact of emotion on learning). Within neuroscience research these functions are studied in isolation for the sake of simplicity, and the nervous system as a whole, functioning in its entirety with all its huge composition of functional interactions, is not considered. For educators, on the other hand, the lowest level of analysis would be the mind of a single child, with levels increasing to incorporate the classroom, neighborhood, country etc. Thus, importing research about a single cognitive factor in isolation, into a field in which context is essentially important creates an inherent difficulty. For example, while rote learning may be shown to improve learning in the research laboratory, the teacher cannot implement that strategy without considering the impact on the child's motivation. In return, it is difficult for neuroscientists to characterize such interactions in a research setting. The Horizontal Problem: Translating research findings: While education theory and data are almost exclusively behavioral, findings from neuroscience research can take on many forms (e.g. electrical, chemical, spatial, temporal etc.). The most common form of data taken from neuroscience to education is the spatial mapping of brain activation to cognitive function. Willingham (2009) highlights the difficulty in applying such spatial information to educational theory. If a certain brain region is known to support a cognitive function relevant for education, what can actually be done with that information? Willingham suggests that this ‘horizontal problem’ can be solved only when a rich body of behavioral data and theories already exist, and points out that such methods have already been successful in identifying subtypes of dyslexia (e.g.). Willingham suggests that what is essential for a successful union of neuroscience and education is that both fields have realistic expectations of one another. For example, educators should not expect that neuroscience will provide prescriptive answers for educational practice, answers for educational goals that are incompatible with neuroscientific methods (e.g. aesthetic training), or levels of analysis beyond the individual level. Finally Willingham suggests that neuroscience will only be useful to educators when targeted at a specific problem at a fine grained level of analysis, such as how people read, but that these data will only be useful in the context of well developed behavioral theories. Other researchers, such as Katzir & Pareblagoev have pointed out that neuroimaging methodology as it stands may not be suitable for the examination of higher level cognitive functions, because it relies primarily on the ‘subtraction method’. By this method, brain activity during a simple control task is subtracted from that of a ‘higher order’ cognitive task, thus leaving the activation that is related specifically to the function of interest. Katzir & Pareblagoev suggest that while this method may be very good for examining low level processing, such as perception, vision and touch, it is very hard to design an effective control task for higher order processing, such as comprehension in reading and inference making. Thus, some researchers argue that functional imaging technologies may not be best suited for the measurement of higher order processing. Katzir & Pareblagoev, suggest that this may not be a deficit of the technology itself, but rather of the design of experiments and the ability to interpret the results. The authors advocate using experimental measures in the scanner for which the behavioural data is already well understood, and for which there exists a strong theoretical framework.Transforming challenges into opportunities
Another recent review of the educational neuroscience debate by Varma, McCandliss and Schwartz focuses on eight primary challenges, divided into scientific challenges and practical challenges, facing the field, and attempts to transform those challenges into opportunities.Scientific challenges
Methods: Neuroscience methods create artificial environments and thus cannot provide useful information about classroom contexts. Furthermore, the concern is that if neuroscience begins to influence educational practice too heavily, there may be a de-emphasis of contextual variables, and solutions to educational problems may become primarily biological rather than instructional. However, Varma et al. argue that novel experimental paradigms create the opportunity to investigate context, such as brain activation following different learning procedures and that neuroimaging can also allow for the examination of strategic/mechanistic developmental changes that cannot be tapped by reaction time and behavioural measures alone. Furthermore, Varma et al. cite recent research that shows that the effects of cultural variables can be investigated using brain imaging (e.g.), and the results used to draw implications for classroom practice. Data: Knowing the brain region that supports an elementary cognitive function tells us nothing about how to design instruction for that function. However, Varma et al. suggest that neuroscience provide the opportunity for a novel analyses of cognition, breaking down behaviour into elements invisible at the behavioural level. For example, the question of whether different arithmetic operations show different speed and accuracy profiles is the result of different efficiency levels within one cognitive system versus the use of different cognitive systems. Reductionist Theories: Applying neuroscience terminology and theory to educational practice is a reduction and is of no practical use to educators. Nothing is gained be redescribing a behavioural deficit in neuroscientific terms. Varma et al. point out that reductionism is a mode by which sciences are unified, and that the co-opting of neuroscience terminology does not necessitate the elimination of education terminology, it simply provides the opportunity for interdisciplinary communication and understanding. Philosophy: Education and neuroscience are fundamentally incompatible, because attempting to describe behavioural phenomena in the classroom by describing physical mechanisms of the individual brain is logically wrong. However, neuroscience may help to resolve internal conflicts within education resulting from differing theoretical constructs and terminologies used within subfields of education by providing a measure of uniformity with regards to results reporting.Pragmatic concerns
Costs: Neuroscience methods are highly expensive, and the expected outcomes do not justify the costs. However, Varma et al. point out that educationally relevant neuroscience may attract addition funding to education research rather than usurping resources. The essential claim of educational neuroscience is that the two fields are interdependent and that a portion of the funding allocated collectively to the two fields should be directed towards shared questions. Timing: Neuroscience, while expanding rapidly, is still in relative infancy with regards to the non-invasive study of healthy brains, and thus education researchers should wait until more data is collected and distilled into succinct theories. Contrary to this, Varma et al. argue that some success is already evident. For example, studies examining the success of dyslexia remediation programmes have been able to reveal the impact of these programmes on the brain networks supporting reading. This in turn leads to the generation of new research questions. Control: If education allows neuroscience in the door, theories will increasingly be cast in terms of neural mechanisms and debates will rely increasingly on neuroimaging data. Neuroscience will cannibalise resources and education research will lose its independence. Varma et al. argue that the assumption of an asymmetric relationship between the two fields is unnecessary. Education has the potential to influence neuroscience, directing future research into complex forms of cognition and education researchers can help Educational Neuroscience to avoid naïve experiments and repetition of earlier mistakes. Neuromyths: Thus far most of the neuroscience findings applied to education have turned out to be neuromyths, irresponsible extrapolations of basic research to education questions. Furthermore, such neuromyths have escaped beyond academia and are being marketed directly to teachers, administrators and the public. Varma et al. respond that the existence of neuromyths reveals a popular fascination with brain function. Appropriate translation of educational neuroscience results and well established collaborative research can decrease the likelihood of neuromyths.A bidirectional relationship
Researchers such as Katzir & Pareblagoev and Cacioppo & Berntson (1992) argue that as well as neuroscience informing education, the educational research approach can contribute to the development of new experimental paradigms in neuroscience research. Katzir and Pareblagoev (2006) suggest the example of dyslexia research as a model of how this bidirectional collaboration might be achieved. In this case, theories of reading processes have guided both the design and interpretation of neuroscience research, but the existing theories were developed primarily from behavioural work. The authors suggest that the establishment of theories, which delineate required skills and subskills for educationally relevant tasks, is an essential requirement for educational neuroscience research to be productive. Furthermore, such theories need to suggest empirically testable connections between educationally relevant behaviours and brain function.The role of educators
Kurt Fischer, director of Harvard University's Mind, Brain and Education graduate program states "One of the reasons there is so much junk out there is that there are so few people who know enough about education and neuroscience to put the thing together". Educators have been reliant upon others’ expertise for the interpretations from Neuroscience hence have not been able to discern whether the claims made are valid or invalid representations of the research. Without a direct access to the primary research educators may be at risk of misusing results from neuroscience research. The need for so called ‘middlemen’ in the translation of research to practice has led to a situation where the application of cognitive neuroscience research findings is running ahead of the research itself. In order to negate the need for middlemen, some researchers have suggested the need to developed a group of ''neuro-educators'', a specially trained class of professionals whose role would be to guide the introduction of cognitive neuroscience into educational practice in a ''sensible and ethical manner''. Neuro-educators would play a pivotal role in assessing the quality of evidence purporting to be relevant to education, assessing who is best placed to employ newly developed knowledge, and with what safeguards, and how to deal with unexpected consequences of implemented research findings. Byrnes & Fox (1998) have suggested that developmental psychologists, educational psychologists and teachers generally fall into one of four orientations with respect to neuroscientific research "(1) those who readily accept (and sometimes over interpret) the results of neuroscientific studies; (2) those who completely reject the neuroscientific approach and consider the results of neuroscientific studies meaningless; (3) those who are unfamiliar with and indifferent toward, neuroscientific research; and (4) those who cautiously accept neuroscientific findings as being a proactive part of the total pattern of findings that have emerged from different corners of the cognitive and neural sciences". Greenwood (2009) 5/sup> suggests that as the body of knowledge available to educators increases, and the ability to be expert in all areas diminishes, the most productive standpoint would the fourth outlined by, 7/sup> that of cautious acceptance of neuroscientific findings and proactive collaboration. Bennett & Rolheiser-Bennett (2001) point out that "teachers must be aware of and act on the science within the art of teaching". They suggest that educators must become aware of other methods and incorporate them into their practice. Furthermore, Bennett and Rolheiser-Bennett suggest that specific bodies of knowledge will play an important role in informing educators when making important decisions with regards to the "design of learning environments". The bodies of knowledge discussed include multiple intelligences, emotional intelligences, learning styles, the human brain, children at risk and gender. As the authors explain these and other areas are just "lenses designed to extend teachers’ understanding of how students learn, and from that understanding, to make decisions about how and when to select, integrate, and enact items in the ... list". 8/sup> Mason supports calls for a two-way constructive collaboration between neuroscience and education, whereby, rather than neuroscience research simply being applied to education, findings from neuroscience research would be used to constrain educational theorizing. In return, education would influence the types of research questions and experimental paradigms used in neuroscience research. Mason also gives the example that while pedagogical practice in the classroom may give rise to educational questions regarding the emotional bases of performance on school tasks, neuroscience has the potential to reveal the brain basis of higher-order thinking processes and thus may help to understand the role that emotion plays in learning and open new areas of study of emotional thought in the classroom.Neuromyths
The term " neuromyths" was first coined by an OECD report on understanding the brain. The term refers to the translation of scientific findings into misinformation regarding education. The OECD report highlights three neuromyths for special attention, although several others have been identified by researchers such as Usha Goswami. # The belief that hemispheric differences relate to different types of learning (i.e. left brain versus right brain). # The belief that the brain is plastic for certain types of learning only during certain "critical periods", and therefore that learning in these areas must occur during these periods. # The belief that effective educational interventions have to coincide with periods of synaptogenesis. Or in other words, children's environments should be enriched during the periods of maximal synaptic growth.Left versus right brain
The idea that the two hemispheres of the brain may learn differently has virtually no grounding in neuroscience research. The idea has arisen from the knowledge that some cognitive skills appear differentially localised to a specific hemisphere (e.g., language functions are typically supported by left hemisphere brain regions in healthy right handed people). However, massive amount of fibre connections link the two hemispheres of the brain in neurologically healthy individuals. Every cognitive skill that has been investigated using neuroimaging to date employs a network of brain regions spread across both cerebral hemispheres, including language and reading, and thus no evidence exists for any type of learning that is specific to one side of the brain.Critical periods
A critical period is a timeframe during the early life of an animal during which the development of some property or skill is rapid and is most susceptible to alteration. During a critical period, a skill or characteristic is most readily acquired. During this time, the plasticity is most dependent on experiences or environmental influences. Two examples of a critical period are the development of binocular vision and linguistic skills in children. The critical periods neuromyth is an overextension of certain neuroscience research findings (see above) primarily from research into the visual system, rather than cognition and learning. Although sensory deprivation during certain time periods can clearly impede the development of visual skills, these periods are sensitive rather than critical, and the opportunity for learning is not necessarily lost forever, as the term "critical" implies. While children may benefit from certain types of environmental input, for example, being taught a second language during the sensitive period for language acquisition, this does not mean that adults are unable to acquire foreign language skills later in life. The idea of critical periods comes primarily from the work of Hubel and Wiesel. Critical periods generally coincide with periods of excess synapse formation, and end at around the same time that synaptic levels stabilise. During these periods of synaptic formation, some brain regions are particularly sensitive to the presence or absence of certain general types of stimuli. There are different critical periods within specific systems, e.g. visual system has different critical periods for ocular dominance, visual acuity and binocular function as well as different critical periods between systems, for example, the critical period for the visual system appears to end around the age of 12 years, while that for acquiring syntax ends around 16 years. Rather than talking of a single critical period for general cognitive systems, neuroscientists now perceive sensitive periods of time during which the brain is most able to be shaped in a subtle and gradual fashion. Furthermore, critical periods themselves may be divided into three phases. The first, rapid change, followed by continued development with the potential for loss or deterioration, and finally a phase of continued development during which the system can recover from deprivation. Although there is evidence for sensitive periods, we do not know whether they exist for culturally transmitted knowledge systems such as educational domains like reading and arithmetic. Further, we do not know what role synaptogenesis plays in the acquisition of these skills.Enriched environments
The enriched environment argument is based on evidence that rats raised in complex environments perform better on maze tasks and have 20–25% more synaptic connections than those raised in austere environments.Greenough, W.T., J.E. Black, and C.S. Wallace, Experience and brain development. Child development, 1987. 58(3): p. 539-559. However, these enriched environments were in laboratory cages, and did not come close to replicating the intensely stimulating environment a rat would experience in the wild. Furthermore, the formation of these additional connections in response to novel environmental stimuli occurs throughout life, not just during a critical or sensitive period. For example, skilled pianists show enlarged representations in the auditory cortex relating specifically to piano tones, while violinists have enlarged neural representations for their left fingers. Even London taxi drivers who learn the London street map in intense detail develop enlarged formations in the part of the brain responsible for spatial representation and navigation. These results show that the brain can form extensive new connections as the result of focused educational input, even when this input is received solely during adulthood. Greenough's work suggests a second type of brain plasticity. Whereas synaptogenesis and critical periods relate to experience-expectant plasticity, synaptic growth in complex environments relates to "experience-dependent" plasticity. This type of plasticity is concerned with environment specific learning, and not to features of the environment that are ubiquitous and common to all members of the species, such as vocabulary. Experience dependent plasticity is important because it does potentially link specific learning and brain plasticity, but it is relevant throughout the lifetime, not just in critical periods. "Experience-expectant plasticity", suggests that the environmental features necessary for fine tuningSynaptogenesis
In addition some critics of the Educational Neuroscience approach have highlighted limitations in applying the understanding of early physiological brain development, in particular synaptogenesis to educational theory. Synaptogenesis research has primarily been carried out on animals (e.g. monkeys and cats). Measures of synaptic density are aggregate measures, and it is known that different types of neuron within the same brain region differ in their synaptic growth rates 0 Secondly, the purported "critical period" of birth to three years is derived from research on rhesus monkeys, who reach puberty at the age of three, and assumes that the period of synaptogenesis in humans exactly mirrors that of monkeys. It may be more reasonable to assume that this period of neural growth actually lasts until puberty, which would mean until early teenage years in humans. Periods of intense synaptogenesis are typically correlated with the emergence of certain skills and cognitive functions, such as visual fixation, grasping, symbol use and working memory. However, these skills continue to develop well after the period that synaptogenesis is thought to end. Many of these skills continue to improve even after synaptic density reaches adult levels, and thus the most we can say is that synaptogenesis may be necessary for the emergence of these skills, but it cannot account entirely for their continued refinement. Some other form of brain change must contribute to ongoing learning. Additionally, the types of cognitive changes usually seen to correlate with synaptogenesis revolve around visual, tactile, movement and working memory. These are not taught skills but rather skills that are usually acquired independent of schooling, even though they may support future learning. How these skills relate to later school learning is, however, unclear. We know that synaptogenesis occurs, and that the pattern of synaptogenesis is important for normal brain function. However, what is lacking is the ability of neuroscience to tell educators what sort of early childhood experiences might enhance children's cognitive capacities or educational outcomes.Male versus female brain
The idea that a person can have a "male" brain or "female" brain is a misinterpretation of terms used to describe cognitive styles by when attempting to conceptualise the nature of cognitive patterns in people with autism spectrum disorder. Baron-Cohen suggested that while men were better "systemisers" (good at understanding mechanical systems), women were better "empathisers" (good at communicating and understanding others), therefore he suggested that autism could be thought of as an extreme form of the "male brain". There was no suggestion that males and females had radically different brains or that females with autism had a male brain.Learning styles
A common myth in the field of education is that individuals have different learning styles, such as 'visual' or 'kinesthetic'. Many individuals will state preferences for the way in which they want to learn, but there is no evidence that matching a teaching technique to a preferred style will improve learning, despite this hypothesis being tested multiple times. There may even be harms associated with the use of learning styles, wherein learners become 'pigeonholed', perceiving that they may not be suited to types of learning that are not matched to their 'learning style' (e.g. so-called visual learners may not wish to learn music). Despite this lack of evidence, a 2012 study demonstrated that a belief in the use of learning styles is widespread amongst teachers, and a 2015 study showed that the majority of research papers inSee also
* Ten percent of brain myth * The five-senses myth *References
Further reading
* * Mareschal, D., Butterworth, B. & Tolmie, A. (2013) Educational Neuroscience. Oxford, UK: Wiley-Blackwell. * Zull, J. (2002). The art of changing the brain: Enriching the practice of teaching by exploring the biology of learning. Sterling, VA: Stylus Publishing, L.L.C. *External links
Government initiatives
Conferences and organisations
Publications