HOME

TheInfoList



OR:

An ecosystem (or ecological system) is a system formed by
organisms An organism is any living thing that functions as an individual. Such a definition raises more problems than it solves, not least because the concept of an individual is also difficult. Many criteria, few of them widely accepted, have been pr ...
in interaction with their environment. The biotic and
abiotic component In biology and ecology, abiotic components or abiotic factors are non-living chemical and physical parts of the environment that affect living organisms and the functioning of ecosystems. Abiotic factors and the phenomena associated with them und ...
s are linked together through
nutrient cycle A nutrient cycle (or ecological recycling) is the movement and exchange of inorganic and organic matter back into the production of matter. Energy flow is a unidirectional and noncyclic pathway, whereas the movement of mineral nutrients is cyc ...
s and
energy Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
flows. Ecosystems are controlled by external and internal factors. External factors—including
climate Climate is the long-term weather pattern in a region, typically averaged over 30 years. More rigorously, it is the mean and variability of meteorological variables over a time spanning from months to millions of years. Some of the meteoro ...
—control the ecosystem's structure, but are not influenced by it. By contrast, internal factors control and are controlled by ecosystem processes; these include
decomposition Decomposition is the process by which dead organic substances are broken down into simpler organic or inorganic matter such as carbon dioxide, water, simple sugars and mineral salts. The process is a part of the nutrient cycle and is ess ...
, the types of species present, root competition, shading, disturbance, and succession. While external factors generally determine which
resource ''Resource'' refers to all the materials available in our environment which are Technology, technologically accessible, Economics, economically feasible and Culture, culturally Sustainability, sustainable and help us to satisfy our needs and want ...
inputs an ecosystem has, their availability within the ecosystem is controlled by internal factors. Ecosystems are dynamic, subject to periodic disturbances and always in the process of recovering from past disturbances. The tendency of an ecosystem to remain close to its equilibrium state, is termed its resistance. Its capacity to absorb disturbance and reorganize, while undergoing change so as to retain essentially the same function, structure, identity, is termed its
ecological resilience In ecology, resilience is the capacity of an ecosystem to respond to a perturbation or Disturbance (ecology), disturbance by resisting damage and subsequently recovering. Such perturbations and disturbances can include stochastic events such as ...
. Ecosystems can be studied through a variety of approaches—theoretical studies, studies monitoring specific ecosystems over long periods of time, those that look at differences between ecosystems to elucidate how they work and direct manipulative experimentation.
Biome A biome () is a distinct geographical region with specific climate, vegetation, and animal life. It consists of a biological community that has formed in response to its physical environment and regional climate. In 1935, Tansley added the ...
s are general classes or categories of ecosystems. However, there is no clear distinction between biomes and ecosystems. Ecosystem classifications are specific kinds of ecological classifications that consider all four elements of the definition of ecosystems: a biotic component, an abiotic complex, the interactions between and within them, and the physical space they occupy. Biotic factors are living things; such as plants, while abiotic are non-living components; such as soil. Plants allow energy to enter the system through
photosynthesis Photosynthesis ( ) is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabo ...
, building up plant tissue. Animals play an important role in the movement of
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic pa ...
and energy through the system, by feeding on plants and one another. They also influence the quantity of plant and
microbial A microorganism, or microbe, is an organism of microscopic size, which may exist in its single-celled form or as a colony of cells. The possible existence of unseen microbial life was suspected from antiquity, with an early attestation in ...
biomass Biomass is a term used in several contexts: in the context of ecology it means living organisms, and in the context of bioenergy it means matter from recently living (but now dead) organisms. In the latter context, there are variations in how ...
present. By breaking down dead
organic matter Organic matter, organic material or natural organic matter is the large source of carbon-based compounds found within natural and engineered, terrestrial, and aquatic environments. It is matter composed of organic compounds that have come fro ...
,
decomposer Decomposers are organisms that break down dead organisms and release the nutrients from the dead matter into the environment around them. Decomposition relies on chemical processes similar to digestion in animals; in fact, many sources use the word ...
s release
carbon Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
back to the atmosphere and facilitate
nutrient cycling A nutrient cycle (or ecological recycling) is the movement and exchange of inorganic and organic matter back into the production of matter. Energy flow is a unidirectional and noncyclic pathway, whereas the movement of mineral nutrients is cyc ...
by converting nutrients stored in dead biomass back to a form that can be readily used by plants and microbes. Ecosystems provide a variety of goods and services upon which people depend, and may be part of. Ecosystem goods include the "tangible, material products" of ecosystem processes such as water, food, fuel, construction material, and
medicinal plants Medicinal plants, also called medicinal herbs, have been discovered and used in traditional medicine practices since prehistoric times. Plants synthesize hundreds of chemical compounds for various functions, including Plant defense against h ...
.
Ecosystem services Ecosystem services are the various benefits that humans derive from Ecosystem, ecosystems. The interconnected Biotic_material, living and Abiotic, non-living components of the natural environment offer benefits such as pollination of crops, clean ...
, on the other hand, are generally "improvements in the condition or location of things of value". These include things like the maintenance of hydrological cycles, cleaning air and water, the maintenance of oxygen in the atmosphere, crop
pollination Pollination is the transfer of pollen from an anther of a plant to the stigma (botany), stigma of a plant, later enabling fertilisation and the production of seeds. Pollinating agents can be animals such as insects, for example bees, beetles or bu ...
and even things like beauty, inspiration and opportunities for research. Many ecosystems become degraded through human impacts, such as soil loss,
air An atmosphere () is a layer of gases that envelop an astronomical object, held in place by the gravity of the object. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A stellar atmosph ...
and
water pollution Water pollution (or aquatic pollution) is the contamination of Body of water, water bodies, with a negative impact on their uses. It is usually a result of human activities. Water bodies include lakes, rivers, oceans, aquifers, reservoirs and ...
,
habitat fragmentation Habitat fragmentation describes the emergence of discontinuities (fragmentation) in an organism's preferred environment (habitat), causing population fragmentation and ecosystem decay. Causes of habitat fragmentation include geological proces ...
, water diversion,
fire suppression Fire suppression may refer to: * Firefighting * Fire suppression systems * Wildfire suppression Wildfire suppression is a range of firefighting tactics used to suppress wildfires. Firefighting efforts depend on many factors such as the availabl ...
, and
introduced species An introduced species, alien species, exotic species, adventive species, immigrant species, foreign species, non-indigenous species, or non-native species is a species living outside its native distributional range, but which has arrived ther ...
and
invasive species An invasive species is an introduced species that harms its new environment. Invasive species adversely affect habitats and bioregions, causing ecological, environmental, and/or economic damage. The term can also be used for native spec ...
. These threats can lead to abrupt transformation of the ecosystem or to gradual disruption of biotic processes and degradation of abiotic conditions of the ecosystem. Once the original ecosystem has lost its defining features, it is considered "collapsed". Ecosystem restoration can contribute to achieving the
Sustainable Development Goals The ''2030 Agenda for Sustainable Development'', adopted by all United Nations (UN) members in 2015, created 17 world Sustainable Development Goals (SDGs). The aim of these global goals is "peace and prosperity for people and the planet" – wh ...
.


Definition

An ecosystem (or ecological system) consists of all the organisms and the abiotic pools (or physical environment) with which they interact. The biotic and
abiotic component In biology and ecology, abiotic components or abiotic factors are non-living chemical and physical parts of the environment that affect living organisms and the functioning of ecosystems. Abiotic factors and the phenomena associated with them und ...
s are linked together through nutrient cycles and energy flows. "Ecosystem processes" are the transfers of energy and materials from one pool to another. Ecosystem processes are known to "take place at a wide range of scales". Therefore, the correct scale of study depends on the question asked.


Origin and development of the term

The term "ecosystem" was first used in 1935 in a publication by British ecologist Arthur Tansley. The term was coined by Arthur Roy Clapham, who came up with the word at Tansley's request. Tansley devised the concept to draw attention to the importance of transfers of materials between organisms and their environment. He later refined the term, describing it as "The whole system, ... including not only the organism-complex, but also the whole complex of physical factors forming what we call the environment". Tansley regarded ecosystems not simply as natural units, but as "mental isolates". Tansley later defined the spatial extent of ecosystems using the term "
ecotope Ecotopes are the smallest ecologically distinct landscape features in a landscape mapping and classification system. As such, they represent relatively homogeneous, spatially explicit landscape functional units that are useful for stratifying lan ...
". G. Evelyn Hutchinson, a limnologist who was a contemporary of Tansley's, combined Charles Elton's ideas about trophic ecology with those of Russian geochemist
Vladimir Vernadsky Vladimir Ivanovich Vernadsky (), also spelt Volodymyr Ivanovych Vernadsky (; – 6 January 1945), was a Russian, Ukrainian, and Soviet mineralogist and geochemist who is considered one of the founders of geochemistry, biogeochemistry, and radio ...
. As a result, he suggested that mineral nutrient availability in a lake limited algal production. This would, in turn, limit the abundance of animals that feed on algae. Raymond Lindeman took these ideas further to suggest that the flow of energy through a lake was the primary driver of the ecosystem. Hutchinson's students, brothers Howard T. Odum and Eugene P. Odum, further developed a "systems approach" to the study of ecosystems. This allowed them to study the flow of energy and material through ecological systems.


Processes


External and internal factors

Ecosystems are controlled by both external and internal factors. External factors, also called state factors, control the overall structure of an ecosystem and the way things work within it, but are not themselves influenced by the ecosystem. On broad geographic scales,
climate Climate is the long-term weather pattern in a region, typically averaged over 30 years. More rigorously, it is the mean and variability of meteorological variables over a time spanning from months to millions of years. Some of the meteoro ...
is the factor that "most strongly determines ecosystem processes and structure". Climate determines the
biome A biome () is a distinct geographical region with specific climate, vegetation, and animal life. It consists of a biological community that has formed in response to its physical environment and regional climate. In 1935, Tansley added the ...
in which the ecosystem is embedded. Rainfall patterns and seasonal temperatures influence photosynthesis and thereby determine the amount of energy available to the ecosystem.
Parent material Parent material is the underlying geological material (generally bedrock or a superficial deposits, superficial or drift (geology), drift deposit) in which soil horizons form. Soils typically inherit a great deal of structure and minerals from th ...
determines the nature of the soil in an ecosystem, and influences the supply of mineral nutrients.
Topography Topography is the study of the forms and features of land surfaces. The topography of an area may refer to the landforms and features themselves, or a description or depiction in maps. Topography is a field of geoscience and planetary sci ...
also controls ecosystem processes by affecting things like
microclimate A microclimate (or micro-climate) is a local set of atmosphere of Earth, atmospheric conditions that differ from those in the surrounding areas, often slightly but sometimes substantially. The term may refer to areas as small as a few square m ...
, soil development and the movement of water through a system. For example, ecosystems can be quite different if situated in a small depression on the landscape, versus one present on an adjacent steep hillside. Other external factors that play an important role in ecosystem functioning include time and potential biota, the organisms that are present in a region and could potentially occupy a particular site. Ecosystems in similar environments that are located in different parts of the world can end up doing things very differently simply because they have different pools of species present. The introduction of non-native species can cause substantial shifts in ecosystem function. Unlike external factors, internal factors in ecosystems not only control ecosystem processes but are also controlled by them. While the
resource ''Resource'' refers to all the materials available in our environment which are Technology, technologically accessible, Economics, economically feasible and Culture, culturally Sustainability, sustainable and help us to satisfy our needs and want ...
inputs are generally controlled by external processes like climate and parent material, the availability of these resources within the ecosystem is controlled by internal factors like decomposition, root competition or shading. Other factors like disturbance, succession or the types of species present are also internal factors.


Primary production

Primary production is the production of
organic matter Organic matter, organic material or natural organic matter is the large source of carbon-based compounds found within natural and engineered, terrestrial, and aquatic environments. It is matter composed of organic compounds that have come fro ...
from inorganic carbon sources. This mainly occurs through
photosynthesis Photosynthesis ( ) is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabo ...
. The energy incorporated through this process supports life on earth, while the carbon makes up much of the organic matter in living and dead biomass,
soil carbon Soil carbon is the solid carbon stored in global Soil, soils. This includes both soil organic matter and Inorganic compound, inorganic carbon as carbonate minerals. It is vital to the soil capacity in our ecosystem. Soil carbon is a carbon sink in ...
and
fossil fuel A fossil fuel is a flammable carbon compound- or hydrocarbon-containing material formed naturally in the Earth's crust from the buried remains of prehistoric organisms (animals, plants or microplanktons), a process that occurs within geolog ...
s. It also drives the
carbon cycle The carbon cycle is a part of the biogeochemical cycle where carbon is exchanged among the biosphere, pedosphere, geosphere, hydrosphere, and atmosphere of Earth. Other major biogeochemical cycles include the nitrogen cycle and the water cycl ...
, which influences global
climate Climate is the long-term weather pattern in a region, typically averaged over 30 years. More rigorously, it is the mean and variability of meteorological variables over a time spanning from months to millions of years. Some of the meteoro ...
via the
greenhouse effect The greenhouse effect occurs when greenhouse gases in a planet's atmosphere insulate the planet from losing heat to space, raising its surface temperature. Surface heating can happen from an internal heat source (as in the case of Jupiter) or ...
. Through the process of photosynthesis, plants capture energy from light and use it to combine
carbon dioxide Carbon dioxide is a chemical compound with the chemical formula . It is made up of molecules that each have one carbon atom covalent bond, covalently double bonded to two oxygen atoms. It is found in a gas state at room temperature and at norma ...
and water to produce
carbohydrate A carbohydrate () is a biomolecule composed of carbon (C), hydrogen (H), and oxygen (O) atoms. The typical hydrogen-to-oxygen atomic ratio is 2:1, analogous to that of water, and is represented by the empirical formula (where ''m'' and ''n'' ...
s and
oxygen Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
. The photosynthesis carried out by all the plants in an ecosystem is called the gross primary production (GPP). About half of the gross GPP is respired by plants in order to provide the energy that supports their growth and maintenance. The remainder, that portion of GPP that is not used up by respiration, is known as the net primary production (NPP). Total photosynthesis is limited by a range of environmental factors. These include the amount of light available, the amount of
leaf A leaf (: leaves) is a principal appendage of the plant stem, stem of a vascular plant, usually borne laterally above ground and specialized for photosynthesis. Leaves are collectively called foliage, as in "autumn foliage", while the leav ...
area a plant has to capture light (shading by other plants is a major limitation of photosynthesis), the rate at which carbon dioxide can be supplied to the
chloroplast A chloroplast () is a type of membrane-bound organelle, organelle known as a plastid that conducts photosynthesis mostly in plant cell, plant and algae, algal cells. Chloroplasts have a high concentration of chlorophyll pigments which captur ...
s to support photosynthesis, the availability of water, and the availability of suitable temperatures for carrying out photosynthesis.


Energy flow

Energy Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
and
carbon Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
enter ecosystems through photosynthesis, are incorporated into living tissue, transferred to other organisms that feed on the living and dead plant matter, and eventually released through respiration. The carbon and energy incorporated into plant tissues (net primary production) is either consumed by animals while the plant is alive, or it remains uneaten when the plant tissue dies and becomes
detritus In biology, detritus ( or ) is organic matter made up of the decomposition, decomposing remains of organisms and plants, and also of feces. Detritus usually hosts communities of microorganisms that colonize and decomposition, decompose (Reminera ...
. In
terrestrial ecosystem Terrestrial ecosystems are ecosystems that are found on land. Examples include tundra, taiga, temperate deciduous forest, tropical rain forest, grassland, deserts. Terrestrial ecosystems differ from aquatic ecosystems by the predominant presen ...
s, the vast majority of the net primary production ends up being broken down by decomposers. The remainder is consumed by animals while still alive and enters the plant-based trophic system. After plants and animals die, the organic matter contained in them enters the detritus-based trophic system. Ecosystem respiration is the sum of respiration by all living organisms (plants, animals, and decomposers) in the ecosystem. Net ecosystem production is the difference between
gross primary production In ecology, primary production is the synthesis of organic compounds from atmospheric or aqueous carbon dioxide. It principally occurs through the process of photosynthesis, which uses light as its source of energy, but it also occurs through ...
(GPP) and ecosystem respiration. In the absence of disturbance, net ecosystem production is equivalent to the net carbon accumulation in the ecosystem. Energy can also be released from an ecosystem through disturbances such as
wildfire A wildfire, forest fire, or a bushfire is an unplanned and uncontrolled fire in an area of Combustibility and flammability, combustible vegetation. Depending on the type of vegetation present, a wildfire may be more specifically identified as a ...
or transferred to other ecosystems (e.g., from a forest to a stream to a lake) by
erosion Erosion is the action of surface processes (such as Surface runoff, water flow or wind) that removes soil, Rock (geology), rock, or dissolved material from one location on the Earth's crust#Crust, Earth's crust and then sediment transport, tran ...
. In aquatic systems, the proportion of plant biomass that gets consumed by
herbivore A herbivore is an animal anatomically and physiologically evolved to feed on plants, especially upon vascular tissues such as foliage, fruits or seeds, as the main component of its diet. These more broadly also encompass animals that eat ...
s is much higher than in terrestrial systems. In trophic systems, photosynthetic organisms are the primary producers. The organisms that consume their tissues are called primary consumers or secondary producers
herbivores A herbivore is an animal anatomically and physiologically evolved to feed on plants, especially upon vascular tissues such as foliage, fruits or seeds, as the main component of its diet. These more broadly also encompass animals that eat ...
. Organisms which feed on
microbe A microorganism, or microbe, is an organism of microscopic size, which may exist in its single-celled form or as a colony of cells. The possible existence of unseen microbial life was suspected from antiquity, with an early attestation in ...
s (
bacteria Bacteria (; : bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of Prokaryote, prokaryotic microorganisms. Typically a few micr ...
and
fungi A fungus (: fungi , , , or ; or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and mold (fungus), molds, as well as the more familiar mushrooms. These organisms are classified as one ...
) are termed microbivores. Animals that feed on primary consumers—
carnivore A carnivore , or meat-eater (Latin, ''caro'', genitive ''carnis'', meaning meat or "flesh" and ''vorare'' meaning "to devour"), is an animal or plant Plants are the eukaryotes that form the Kingdom (biology), kingdom Plantae; they ar ...
s—are secondary consumers. Each of these constitutes a trophic level. The sequence of consumption—from plant to herbivore, to carnivore—forms a
food chain A food chain is a linear network of links in a food web, often starting with an autotroph (such as grass or algae), also called a producer, and typically ending at an apex predator (such as grizzly bears or killer whales), detritivore (such as ...
. Real systems are much more complex than this—organisms will generally feed on more than one form of food, and may feed at more than one trophic level. Carnivores may capture some prey that is part of a plant-based trophic system and others that are part of a detritus-based trophic system (a bird that feeds both on herbivorous grasshoppers and earthworms, which consume detritus). Real systems, with all these complexities, form
food web A food web is the natural interconnection of food chains and a graphical representation of what-eats-what in an ecological community. Position in the food web, or trophic level, is used in ecology to broadly classify organisms as autotrophs or he ...
s rather than food chains which present a number of common, non random properties in the topology of their network.


Decomposition

The carbon and nutrients in dead organic matter are broken down by a group of processes known as decomposition. This releases nutrients that can then be re-used for plant and microbial production and returns carbon dioxide to the atmosphere (or water) where it can be used for photosynthesis. In the absence of decomposition, the dead organic matter would accumulate in an ecosystem, and nutrients and atmospheric carbon dioxide would be depleted. Decomposition processes can be separated into three categories— leaching, fragmentation and chemical alteration of dead material. As water moves through dead organic matter, it dissolves and carries with it the water-soluble components. These are then taken up by organisms in the soil, react with mineral soil, or are transported beyond the confines of the ecosystem (and are considered lost to it). Newly shed leaves and newly dead animals have high concentrations of water-soluble components and include
sugar Sugar is the generic name for sweet-tasting, soluble carbohydrates, many of which are used in food. Simple sugars, also called monosaccharides, include glucose Glucose is a sugar with the Chemical formula#Molecular formula, molecul ...
s,
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 a ...
s and mineral nutrients. Leaching is more important in wet environments and less important in dry ones. Fragmentation processes break organic material into smaller pieces, exposing new surfaces for colonization by microbes. Freshly shed
leaf litter Plant litter (also leaf litter, tree litter, soil litter, litterfall, or duff) is dead plant material (such as leaves, bark, needles, twigs, and cladodes) that has fallen to the ground. This detritus or dead organic material and its constituen ...
may be inaccessible due to an outer layer of
cuticle A cuticle (), or cuticula, is any of a variety of tough but flexible, non-mineral outer coverings of an organism, or parts of an organism, that provide protection. Various types of "cuticle" are non- homologous, differing in their origin, structu ...
or bark, and cell contents are protected by a
cell wall A cell wall is a structural layer that surrounds some Cell type, cell types, found immediately outside the cell membrane. It can be tough, flexible, and sometimes rigid. Primarily, it provides the cell with structural support, shape, protection, ...
. Newly dead animals may be covered by an
exoskeleton An exoskeleton () . is a skeleton that is on the exterior of an animal in the form of hardened integument, which both supports the body's shape and protects the internal organs, in contrast to an internal endoskeleton (e.g. human skeleton, that ...
. Fragmentation processes, which break through these protective layers, accelerate the rate of microbial decomposition. Animals fragment detritus as they hunt for food, as does passage through the gut.
Freeze-thaw cycle Weathering is the deterioration of rocks, soils and minerals (as well as wood and artificial materials) through contact with water, atmospheric gases, sunlight, and biological organisms. It occurs '' in situ'' (on-site, with little or no move ...
s and cycles of wetting and drying also fragment dead material. The chemical alteration of the dead organic matter is primarily achieved through bacterial and fungal action. Fungal
hypha A hypha (; ) is a long, branching, filamentous structure of a fungus, oomycete, or actinobacterium. In most fungi, hyphae are the main mode of vegetative growth, and are collectively called a mycelium. Structure A hypha consists of one o ...
e produce enzymes that can break through the tough outer structures surrounding dead plant material. They also produce enzymes that break down
lignin Lignin is a class of complex organic polymers that form key structural materials in the support tissues of most plants. Lignins are particularly important in the formation of cell walls, especially in wood and bark, because they lend rigidit ...
, which allows them access to both cell contents and the nitrogen in the lignin. Fungi can transfer carbon and nitrogen through their hyphal networks and thus, unlike bacteria, are not dependent solely on locally available resources.


Decomposition rates

Decomposition rates vary among ecosystems. The rate of decomposition is governed by three sets of factors—the physical environment (temperature, moisture, and soil properties), the quantity and quality of the dead material available to decomposers, and the nature of the microbial community itself. Temperature controls the rate of microbial respiration; the higher the temperature, the faster the microbial decomposition occurs. Temperature also affects soil moisture, which affects decomposition. Freeze-thaw cycles also affect decomposition—freezing temperatures kill soil microorganisms, which allows leaching to play a more important role in moving nutrients around. This can be especially important as the soil thaws in the spring, creating a pulse of nutrients that become available. Decomposition rates are low under very wet or very dry conditions. Decomposition rates are highest in wet, moist conditions with adequate levels of oxygen. Wet soils tend to become deficient in oxygen (this is especially true in
wetland A wetland is a distinct semi-aquatic ecosystem whose groundcovers are flooded or saturated in water, either permanently, for years or decades, or only seasonally. Flooding results in oxygen-poor ( anoxic) processes taking place, especially ...
s), which slows microbial growth. In dry soils, decomposition slows as well, but bacteria continue to grow (albeit at a slower rate) even after soils become too dry to support plant growth.


Dynamics and resilience

Ecosystems are dynamic entities. They are subject to periodic disturbances and are always in the process of recovering from past disturbances. When a perturbation occurs, an ecosystem responds by moving away from its initial state. The tendency of an ecosystem to remain close to its equilibrium state, despite that disturbance, is termed its resistance. The capacity of a system to absorb disturbance and reorganize while undergoing change so as to retain essentially the same function, structure, identity, and feedbacks is termed its
ecological resilience In ecology, resilience is the capacity of an ecosystem to respond to a perturbation or Disturbance (ecology), disturbance by resisting damage and subsequently recovering. Such perturbations and disturbances can include stochastic events such as ...
. Resilience thinking also includes humanity as an integral part of the
biosphere The biosphere (), also called the ecosphere (), is the worldwide sum of all ecosystems. It can also be termed the zone of life on the Earth. The biosphere (which is technically a spherical shell) is virtually a closed system with regard to mat ...
where we are dependent on
ecosystem services Ecosystem services are the various benefits that humans derive from Ecosystem, ecosystems. The interconnected Biotic_material, living and Abiotic, non-living components of the natural environment offer benefits such as pollination of crops, clean ...
for our survival and must build and maintain their natural capacities to withstand shocks and disturbances. Time plays a central role over a wide range, for example, in the slow development of soil from bare rock and the faster recovery of a community from disturbance. Disturbance also plays an important role in ecological processes. F. Stuart Chapin and coauthors define disturbance as "a relatively discrete event in time that removes plant biomass". This can range from
herbivore A herbivore is an animal anatomically and physiologically evolved to feed on plants, especially upon vascular tissues such as foliage, fruits or seeds, as the main component of its diet. These more broadly also encompass animals that eat ...
outbreaks, treefalls, fires, hurricanes, floods, glacial advances, to volcanic eruptions. Such disturbances can cause large changes in plant, animal and microbe populations, as well as soil organic matter content. Disturbance is followed by succession, a "directional change in ecosystem structure and functioning resulting from biotically driven changes in resource supply." The frequency and severity of disturbance determine the way it affects ecosystem function. A major disturbance like a volcanic eruption or
glacial A glacier (; or ) is a persistent body of dense ice, a form of rock, that is constantly moving downhill under its own weight. A glacier forms where the accumulation of snow exceeds its ablation over many years, often centuries. It acquires ...
advance and retreat leave behind soils that lack plants, animals or organic matter. Ecosystems that experience such disturbances undergo
primary succession Primary succession is the beginning step of ecological succession where species known as pioneer species colonize an uninhabited site, which usually occurs in an environment devoid of vegetation and other organisms. In contrast, secondary su ...
. A less severe disturbance like forest fires, hurricanes or cultivation result in
secondary succession Secondary succession is the secondary ecological succession of a plant's life. As opposed to the first, primary succession, secondary succession is a process started by an event (e.g. forest fire, harvesting, hurricane, etc.) that reduces an a ...
and a faster recovery. More severe and more frequent disturbance result in longer recovery times. From one year to another, ecosystems experience variation in their biotic and abiotic environments. A
drought A drought is a period of drier-than-normal conditions.Douville, H., K. Raghavan, J. Renwick, R.P. Allan, P.A. Arias, M. Barlow, R. Cerezo-Mota, A. Cherchi, T.Y. Gan, J. Gergis, D.  Jiang, A.  Khan, W.  Pokam Mba, D.  Rosenfeld, J. Tierney, ...
, a colder than usual winter, and a pest outbreak all are short-term variability in environmental conditions. Animal populations vary from year to year, building up during resource-rich periods and crashing as they overshoot their food supply. Longer-term changes also shape ecosystem processes. For example, the forests of eastern North America still show legacies of cultivation which ceased in 1850 when large areas were reverted to forests. Another example is the
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The abundance of methane on Earth makes ...
production in eastern
Siberia Siberia ( ; , ) is an extensive geographical region comprising all of North Asia, from the Ural Mountains in the west to the Pacific Ocean in the east. It has formed a part of the sovereign territory of Russia and its predecessor states ...
n lakes that is controlled by
organic matter Organic matter, organic material or natural organic matter is the large source of carbon-based compounds found within natural and engineered, terrestrial, and aquatic environments. It is matter composed of organic compounds that have come fro ...
which accumulated during the
Pleistocene The Pleistocene ( ; referred to colloquially as the ''ice age, Ice Age'') is the geological epoch (geology), epoch that lasted from to 11,700 years ago, spanning the Earth's most recent period of repeated glaciations. Before a change was fin ...
.


Nutrient cycling

Ecosystems continually exchange energy and carbon with the wider environment. Mineral nutrients, on the other hand, are mostly cycled back and forth between plants, animals, microbes and the soil. Most nitrogen enters ecosystems through biological
nitrogen fixation Nitrogen fixation is a chemical process by which molecular dinitrogen () is converted into ammonia (). It occurs both biologically and abiological nitrogen fixation, abiologically in chemical industry, chemical industries. Biological nitrogen ...
, is deposited through precipitation, dust, gases or is applied as
fertilizer A fertilizer or fertiliser is any material of natural or synthetic origin that is applied to soil or to plant tissues to supply plant nutrients. Fertilizers may be distinct from liming materials or other non-nutrient soil amendments. Man ...
. Most terrestrial ecosystems are nitrogen-limited in the short term making nitrogen cycling an important control on ecosystem production. Over the long term, phosphorus availability can also be critical. Macronutrients which are required by all plants in large quantities include the primary nutrients (which are most limiting as they are used in largest amounts): Nitrogen, phosphorus, potassium. Secondary major nutrients (less often limiting) include: Calcium, magnesium, sulfur.
Micronutrient Micronutrients are essential chemicals required by organisms in small quantities to perform various biogeochemical processes and regulate physiological functions of cells and organs. By enabling these processes, micronutrients support the heal ...
s required by all plants in small quantities include boron, chloride, copper, iron, manganese, molybdenum, zinc. Finally, there are also beneficial nutrients which may be required by certain plants or by plants under specific environmental conditions: aluminum, cobalt, iodine, nickel, selenium, silicon, sodium, vanadium. Until modern times, nitrogen fixation was the major source of nitrogen for ecosystems. Nitrogen-fixing bacteria either live symbiotically with plants or live freely in the soil. The energetic cost is high for plants that support nitrogen-fixing symbionts—as much as 25% of gross primary production when measured in controlled conditions. Many members of the
legume Legumes are plants in the pea family Fabaceae (or Leguminosae), or the fruit or seeds of such plants. When used as a dry grain for human consumption, the seeds are also called pulses. Legumes are grown agriculturally, primarily for human consum ...
plant family support nitrogen-fixing symbionts. Some
cyanobacteria Cyanobacteria ( ) are a group of autotrophic gram-negative bacteria that can obtain biological energy via oxygenic photosynthesis. The name "cyanobacteria" () refers to their bluish green (cyan) color, which forms the basis of cyanobacteri ...
are also capable of nitrogen fixation. These are
phototroph Phototrophs () are organisms that carry out photon capture to produce complex organic compounds (e.g. carbohydrates) and acquire energy. They use the energy from light to carry out various cellular metabolic processes. It is a list of common m ...
s, which carry out photosynthesis. Like other nitrogen-fixing bacteria, they can either be free-living or have symbiotic relationships with plants. Other sources of nitrogen include acid deposition produced through the combustion of fossil fuels,
ammonia Ammonia is an inorganic chemical compound of nitrogen and hydrogen with the chemical formula, formula . A Binary compounds of hydrogen, stable binary hydride and the simplest pnictogen hydride, ammonia is a colourless gas with a distinctive pu ...
gas which evaporates from agricultural fields which have had fertilizers applied to them, and dust. Anthropogenic nitrogen inputs account for about 80% of all nitrogen fluxes in ecosystems. When plant tissues are shed or are eaten, the nitrogen in those tissues becomes available to animals and microbes. Microbial decomposition releases nitrogen compounds from dead organic matter in the soil, where plants, fungi, and bacteria compete for it. Some soil bacteria use organic nitrogen-containing compounds as a source of carbon, and release
ammonium Ammonium is a modified form of ammonia that has an extra hydrogen atom. It is a positively charged (cationic) polyatomic ion, molecular ion with the chemical formula or . It is formed by the protonation, addition of a proton (a hydrogen nucleu ...
ions into the soil. This process is known as nitrogen mineralization. Others convert ammonium to
nitrite The nitrite polyatomic ion, ion has the chemical formula . Nitrite (mostly sodium nitrite) is widely used throughout chemical and pharmaceutical industries. The nitrite anion is a pervasive intermediate in the nitrogen cycle in nature. The name ...
and
nitrate Nitrate is a polyatomic ion with the chemical formula . salt (chemistry), Salts containing this ion are called nitrates. Nitrates are common components of fertilizers and explosives. Almost all inorganic nitrates are solubility, soluble in wa ...
ions, a process known as
nitrification ''Nitrification'' is the biological oxidation of ammonia to nitrate via the intermediary nitrite. Nitrification is an important step in the nitrogen cycle in soil. The process of complete nitrification may occur through separate organisms or ent ...
.
Nitric oxide Nitric oxide (nitrogen oxide, nitrogen monooxide, or nitrogen monoxide) is a colorless gas with the formula . It is one of the principal oxides of nitrogen. Nitric oxide is a free radical: it has an unpaired electron, which is sometimes den ...
and
nitrous oxide Nitrous oxide (dinitrogen oxide or dinitrogen monoxide), commonly known as laughing gas, nitrous, or factitious air, among others, is a chemical compound, an Nitrogen oxide, oxide of nitrogen with the Chemical formula, formula . At room te ...
are also produced during nitrification. Under nitrogen-rich and oxygen-poor conditions, nitrates and nitrites are converted to
nitrogen gas Nitrogen is a chemical element; it has symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at seventh i ...
, a process known as
denitrification Denitrification is a microbially facilitated process where nitrate (NO3−) is reduced and ultimately produces molecular nitrogen (N2) through a series of intermediate gaseous nitrogen oxide products. Facultative anaerobic bacteria perform denitr ...
. Mycorrhizal fungi which are symbiotic with plant roots, use carbohydrates supplied by the plants and in return transfer phosphorus and nitrogen compounds back to the plant roots. This is an important pathway of organic nitrogen transfer from dead organic matter to plants. This mechanism may contribute to more than 70 Tg of annually assimilated plant nitrogen, thereby playing a critical role in global nutrient cycling and ecosystem function. Phosphorus enters ecosystems through
weathering Weathering is the deterioration of rocks, soils and minerals (as well as wood and artificial materials) through contact with water, atmospheric gases, sunlight, and biological organisms. It occurs '' in situ'' (on-site, with little or no move ...
. As ecosystems age this supply diminishes, making phosphorus-limitation more common in older landscapes (especially in the tropics). Calcium and sulfur are also produced by weathering, but acid deposition is an important source of sulfur in many ecosystems. Although magnesium and manganese are produced by weathering, exchanges between soil organic matter and living cells account for a significant portion of ecosystem fluxes. Potassium is primarily cycled between living cells and soil organic matter.


Function and biodiversity

Biodiversity Biodiversity is the variability of life, life on Earth. It can be measured on various levels. There is for example genetic variability, species diversity, ecosystem diversity and Phylogenetics, phylogenetic diversity. Diversity is not distribut ...
plays an important role in ecosystem functioning. Ecosystem processes are driven by the species in an ecosystem, the nature of the individual species, and the relative abundance of organisms among these species. Ecosystem processes are the net effect of the actions of individual organisms as they interact with their environment.
Ecological theory Theoretical ecology is the scientific discipline devoted to the study of ecological systems using theoretical methods such as simple conceptual models, mathematical models, computational simulations, and advanced data analysis. Effective models ...
suggests that in order to coexist, species must have some level of
limiting similarity Limiting similarity (informally "limsim") is a concept in theoretical ecology and community ecology that proposes the existence of a maximum level of niche overlap between two given species that will allow continued coexistence. This concept is ...
—they must be different from one another in some fundamental way, otherwise, one species would competitively exclude the other. Despite this, the cumulative effect of additional species in an ecosystem is not linear: additional species may enhance nitrogen retention, for example. However, beyond some level of species richness, additional species may have little additive effect unless they differ substantially from species already present. This is the case for example for exotic species. The addition (or loss) of species that are ecologically similar to those already present in an ecosystem tends to only have a small effect on ecosystem function. Ecologically distinct species, on the other hand, have a much larger effect. Similarly, dominant species have a large effect on ecosystem function, while rare species tend to have a small effect.
Keystone species A keystone species is a species that has a disproportionately large effect on its natural environment relative to its abundance. The concept was introduced in 1969 by the zoologist Robert T. Paine. Keystone species play a critical role in main ...
tend to have an effect on ecosystem function that is disproportionate to their abundance in an ecosystem. An ecosystem engineer is any
organism An organism is any life, living thing that functions as an individual. Such a definition raises more problems than it solves, not least because the concept of an individual is also difficult. Many criteria, few of them widely accepted, have be ...
that creates, significantly modifies, maintains or destroys a
habitat In ecology, habitat refers to the array of resources, biotic factors that are present in an area, such as to support the survival and reproduction of a particular species. A species' habitat can be seen as the physical manifestation of its ...
.


Study approaches


Ecosystem ecology

Ecosystem ecology Ecosystem ecology is the integrated study of living ( biotic) and non-living ( abiotic) components of ecosystems and their interactions within an ecosystem framework. This science examines how ecosystems work and relates this to their components ...
is the "study of the interactions between organisms and their environment as an integrated system". The size of ecosystems can range up to ten
orders of magnitude In a ratio scale based on powers of ten, the order of magnitude is a measure of the nearness of two figures. Two numbers are "within an order of magnitude" of each other if their ratio is between 1/10 and 10. In other words, the two numbers are wi ...
, from the surface layers of rocks to the surface of the planet. The Hubbard Brook Ecosystem Study started in 1963 to study the White Mountains in New Hampshire. It was the first successful attempt to study an entire watershed as an ecosystem. The study used stream
chemistry Chemistry is the scientific study of the properties and behavior of matter. It is a physical science within the natural sciences that studies the chemical elements that make up matter and chemical compound, compounds made of atoms, molecules a ...
as a means of monitoring ecosystem properties, and developed a detailed biogeochemical model of the ecosystem. Long-term research at the site led to the discovery of
acid rain Acid rain is rain or any other form of Precipitation (meteorology), precipitation that is unusually acidic, meaning that it has elevated levels of hydrogen ions (low pH). Most water, including drinking water, has a neutral pH that exists b ...
in North America in 1972. Researchers documented the depletion of soil cations (especially calcium) over the next several decades. Ecosystems can be studied through a variety of approaches—theoretical studies, studies monitoring specific ecosystems over long periods of time, those that look at differences between ecosystems to elucidate how they work and direct manipulative experimentation. Studies can be carried out at a variety of scales, ranging from whole-ecosystem studies to studying microcosms or mesocosms (simplified representations of ecosystems). American ecologist Stephen R. Carpenter has argued that microcosm experiments can be "irrelevant and diversionary" if they are not carried out in conjunction with field studies done at the ecosystem scale. In such cases, microcosm experiments may fail to accurately predict ecosystem-level dynamics.


Classifications

Biome A biome () is a distinct geographical region with specific climate, vegetation, and animal life. It consists of a biological community that has formed in response to its physical environment and regional climate. In 1935, Tansley added the ...
s are general classes or categories of ecosystems. However, there is no clear distinction between biomes and ecosystems. Biomes are always defined at a very general level. Ecosystems can be described at levels that range from very general (in which case the names are sometimes the same as those of biomes) to very specific, such as "wet coastal needle-leafed forests". Biomes vary due to global variations in
climate Climate is the long-term weather pattern in a region, typically averaged over 30 years. More rigorously, it is the mean and variability of meteorological variables over a time spanning from months to millions of years. Some of the meteoro ...
. Biomes are often defined by their structure: at a general level, for example,
tropical forest Tropical forests are forested ecoregions with tropical climates – that is, land areas approximately bounded by the Tropic of Cancer, tropics of Cancer and Tropic of Capricorn, Capricorn, but possibly affected by other factors such as prevailing ...
s, temperate grasslands, and arctic
tundra In physical geography, a tundra () is a type of biome where tree growth is hindered by frigid temperatures and short growing seasons. There are three regions and associated types of tundra: #Arctic, Arctic, Alpine tundra, Alpine, and #Antarctic ...
. There can be any degree of subcategories among ecosystem types that comprise a biome, e.g., needle-leafed boreal forests or wet tropical forests. Although ecosystems are most commonly categorized by their structure and geography, there are also other ways to categorize and classify ecosystems such as by their level of human impact (see anthropogenic biome), or by their integration with social processes or technological processes or their novelty (e.g. novel ecosystem). Each of these taxonomies of ecosystems tends to emphasize different structural or functional properties. None of these is the "best" classification. Ecosystem classifications are specific kinds of ecological classifications that consider all four elements of the definition of
ecosystems An ecosystem (or ecological system) is a system formed by Organism, organisms in interaction with their Biophysical environment, environment. The Biotic material, biotic and abiotic components are linked together through nutrient cycles and en ...
: a biotic component, an abiotic complex, the interactions between and within them, and the physical space they occupy. Different approaches to ecological classifications have been developed in terrestrial, freshwater and marine disciplines, and a function-based typology has been proposed to leverage the strengths of these different approaches into a unified system.


Human interactions with ecosystems

Human activities are important in almost all ecosystems. Although humans exist and operate within ecosystems, their cumulative effects are large enough to influence external factors like climate.


Ecosystem goods and services

Ecosystems provide a variety of goods and services upon which people depend. Ecosystem goods include the "tangible, material products" of ecosystem processes such as water, food, fuel, construction material, and
medicinal plant Medicinal plants, also called medicinal herbs, have been discovered and used in traditional medicine practices since prehistoric times. Plants synthesize hundreds of chemical compounds for various functions, including Plant defense against h ...
s. They also include less tangible items like
tourism Tourism is travel for pleasure, and the Commerce, commercial activity of providing and supporting such travel. World Tourism Organization, UN Tourism defines tourism more generally, in terms which go "beyond the common perception of tourism as ...
and recreation, and genes from wild plants and animals that can be used to improve domestic species.
Ecosystem services Ecosystem services are the various benefits that humans derive from Ecosystem, ecosystems. The interconnected Biotic_material, living and Abiotic, non-living components of the natural environment offer benefits such as pollination of crops, clean ...
, on the other hand, are generally "improvements in the condition or location of things of value". These include things like the maintenance of hydrological cycles, cleaning air and water, the maintenance of oxygen in the atmosphere, crop
pollination Pollination is the transfer of pollen from an anther of a plant to the stigma (botany), stigma of a plant, later enabling fertilisation and the production of seeds. Pollinating agents can be animals such as insects, for example bees, beetles or bu ...
and even things like beauty, inspiration and opportunities for research. While material from the ecosystem had traditionally been recognized as being the basis for things of economic value, ecosystem services tend to be taken for granted. The ''
Millennium Ecosystem Assessment The Millennium Ecosystem Assessment (MA) is a major assessment of the human impact on the environment, called for by the United Nations Secretary-General Kofi Annan in 2000, launched in 2001 and published in 2005 with more than $14 million of ...
'' is an international synthesis by over 1000 of the world's leading biological scientists that analyzes the state of the Earth's ecosystems and provides summaries and guidelines for decision-makers. The report identified four major categories of ecosystem services: provisioning, regulating, cultural and supporting services. It concludes that human activity is having a significant and escalating impact on the biodiversity of the world ecosystems, reducing both their resilience and biocapacity. The report refers to natural systems as humanity's "life-support system", providing essential ecosystem services. The assessment measures 24 ecosystem services and concludes that only four have shown improvement over the last 50 years, 15 are in serious decline, and five are in a precarious condition. The
Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) is an intergovernmental organization established to improve communication between science and policy on issues of biodiversity and ecosystem services. It ...
(IPBES) is an intergovernmental organization established to improve the interface between science and policy on issues of
biodiversity Biodiversity is the variability of life, life on Earth. It can be measured on various levels. There is for example genetic variability, species diversity, ecosystem diversity and Phylogenetics, phylogenetic diversity. Diversity is not distribut ...
and ecosystem services. It is intended to serve a similar role to the
Intergovernmental Panel on Climate Change The Intergovernmental Panel on Climate Change (IPCC) is an intergovernmental body of the United Nations. Its job is to "provide governments at all levels with scientific information that they can use to develop climate policies". The World Met ...
. Ecosystem services are limited and also threatened by human activities. To help inform decision-makers, many ecosystem services are being assigned economic values, often based on the cost of replacement with anthropogenic alternatives. The ongoing challenge of prescribing economic value to nature, for example through biodiversity banking, is prompting transdisciplinary shifts in how we recognize and manage the environment, social responsibility, business opportunities, and our future as a species.


Degradation and decline

As human population and per capita consumption grow, so do the resource demands imposed on ecosystems and the effects of the human
ecological footprint The ecological footprint measures human demand on natural capital, i.e. the quantity of nature it takes to support people and their economies. It tracks human demand on nature through an ecological accounting system. The accounts contrast the biolo ...
. Natural resources are vulnerable and limited. The environmental impacts of
anthropogenic Anthropogenic ("human" + "generating") is an adjective that may refer to: * Anthropogeny, the study of the origins of humanity Anthropogenic may also refer to things that have been generated by humans, as follows: * Human impact on the enviro ...
actions are becoming more apparent. Problems for all ecosystems include: environmental pollution,
climate change Present-day climate change includes both global warming—the ongoing increase in Global surface temperature, global average temperature—and its wider effects on Earth's climate system. Climate variability and change, Climate change in ...
and
biodiversity loss Biodiversity loss happens when plant or animal species disappear completely from Earth (extinction) or when there is a decrease or disappearance of species in a specific area. Biodiversity loss means that there is a reduction in Biodiversity, b ...
. For terrestrial ecosystems further threats include
air pollution Air pollution is the presence of substances in the Atmosphere of Earth, air that are harmful to humans, other living beings or the environment. Pollutants can be Gas, gases like Ground-level ozone, ozone or nitrogen oxides or small particles li ...
,
soil degradation Soil retrogression and degradation are two regressive evolution processes associated with the loss of equilibrium of a soil health, stable soil. Retrogression is primarily due to soil erosion and corresponds to a phenomenon where succession revert ...
, and
deforestation Deforestation or forest clearance is the removal and destruction of a forest or stand of trees from land that is then converted to non-forest use. Deforestation can involve conversion of forest land to farms, ranches, or urban use. Ab ...
. For aquatic ecosystems threats also include unsustainable exploitation of marine resources (for example
overfishing Overfishing is the removal of a species of fish (i.e. fishing) from a body of water at a rate greater than that the species can replenish its population naturally (i.e. the overexploitation of the fishery's existing Fish stocks, fish stock), resu ...
),
marine pollution Marine pollution occurs when substances used or spread by humans, such as industrial waste, industrial, agricultural pollution, agricultural, and municipal solid waste, residential waste; particle (ecology), particles; noise; excess carbon dioxi ...
,
microplastics Microplastics are "synthetic solid particles or polymeric matrices, with regular or irregular shape and with size ranging from 1 μm to 5 mm, of either primary or secondary manufacturing origin, which are insoluble in water." Microplastics a ...
pollution, the
effects of climate change on oceans There are many effects of climate change on oceans. One of the most important is an increase in ocean temperatures. More frequent marine heatwaves are linked to this. The rising temperature contributes to a Sea level rise, rise in sea levels due ...
(e.g. warming and acidification), and building on coastal areas. Many ecosystems become degraded through human impacts, such as soil loss,
air An atmosphere () is a layer of gases that envelop an astronomical object, held in place by the gravity of the object. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A stellar atmosph ...
and
water pollution Water pollution (or aquatic pollution) is the contamination of Body of water, water bodies, with a negative impact on their uses. It is usually a result of human activities. Water bodies include lakes, rivers, oceans, aquifers, reservoirs and ...
,
habitat fragmentation Habitat fragmentation describes the emergence of discontinuities (fragmentation) in an organism's preferred environment (habitat), causing population fragmentation and ecosystem decay. Causes of habitat fragmentation include geological proces ...
, water diversion,
fire suppression Fire suppression may refer to: * Firefighting * Fire suppression systems * Wildfire suppression Wildfire suppression is a range of firefighting tactics used to suppress wildfires. Firefighting efforts depend on many factors such as the availabl ...
, and
introduced species An introduced species, alien species, exotic species, adventive species, immigrant species, foreign species, non-indigenous species, or non-native species is a species living outside its native distributional range, but which has arrived ther ...
and
invasive species An invasive species is an introduced species that harms its new environment. Invasive species adversely affect habitats and bioregions, causing ecological, environmental, and/or economic damage. The term can also be used for native spec ...
. These threats can lead to abrupt transformation of the ecosystem or to gradual disruption of biotic processes and degradation of abiotic conditions of the ecosystem. Once the original ecosystem has lost its defining features, it is considered '' collapsed'' (see also IUCN Red List of Ecosystems). Ecosystem collapse could be reversible and in this way differs from species extinction. Quantitative assessments of the risk of collapse are used as measures of conservation status and trends.


Management

When
natural resource management Natural resource management (NRM) is the management of natural resources such as Land (economics), land, water, soil, plants and animals, with a particular focus on how management affects the quality of life for both present and future generati ...
is applied to whole ecosystems, rather than single species, it is termed
ecosystem management Ecosystem management is an approach to natural resource management that aims to ensure the long-term sustainability and persistence of an ecosystem's function and services while meeting socioeconomic, political, and cultural needs. Although indi ...
. Although definitions of ecosystem management abound, there is a common set of principles which underlie these definitions: A fundamental principle is the long-term
sustainability Sustainability is a social goal for people to co-exist on Earth over a long period of time. Definitions of this term are disputed and have varied with literature, context, and time. Sustainability usually has three dimensions (or pillars): env ...
of the production of goods and services by the ecosystem; "intergenerational sustainability sa precondition for management, not an afterthought". While ecosystem management can be used as part of a plan for
wilderness Wilderness or wildlands (usually in the plurale tantum, plural) are Earth, Earth's natural environments that have not been significantly modified by human impact on the environment, human activity, or any urbanization, nonurbanized land not u ...
conservation, it can also be used in intensively managed ecosystems (see, for example, agroecosystem and close to nature forestry).


Restoration and sustainable development

Integrated conservation and development projects (ICDPs) aim to address conservation and human livelihood (
sustainable development Sustainable development is an approach to growth and Human development (economics), human development that aims to meet the needs of the present without compromising the ability of future generations to meet their own needs.United Nations General ...
) concerns in
developing countries A developing country is a sovereign state with a less-developed Secondary sector of the economy, industrial base and a lower Human Development Index (HDI) relative to developed countries. However, this definition is not universally agreed upon. ...
together, rather than separately as was often done in the past.


See also

*
Complex system A complex system is a system composed of many components that may interact with one another. Examples of complex systems are Earth's global climate, organisms, the human brain, infrastructure such as power grid, transportation or communication sy ...
*
Earth science Earth science or geoscience includes all fields of natural science related to the planet Earth. This is a branch of science dealing with the physical, chemical, and biological complex constitutions and synergistic linkages of Earth's four spheres ...
*
Ecoregion An ecoregion (ecological region) is an ecological and geographic area that exists on multiple different levels, defined by type, quality, and quantity of environmental resources. Ecoregions cover relatively large areas of land or water, and c ...
*
Ecological resilience In ecology, resilience is the capacity of an ecosystem to respond to a perturbation or Disturbance (ecology), disturbance by resisting damage and subsequently recovering. Such perturbations and disturbances can include stochastic events such as ...
*
Ecosystem-based adaptation Ecosystem-based adaptation (EBA or EbA) encompasses a broad set of approaches to Climate change adaptation, adapt to climate change. They all involve the Ecosystem management, management of ecosystems and their services to reduce the vulnerability ...
*
Artificialization The artificialization of soil, an environment, or Biotope, natural or semi-natural habitat is the loss of its qualities: its Wilderness, naturalness, a quality that includes a self-sustaining capacity to harbor certain biodiversity, natural cycles ...
*
Ecosystem structure Ecosystem structure refers to the spatial arrangement and interrelationships among the components of an ecosystem, a specific type of system. The smallest units of an ecosystem are individual organism, organisms of various species. These specie ...


Types

The following articles are types of ecosystems for particular types of regions or zones: *
Aquatic ecosystem An aquatic ecosystem is an ecosystem found in and around a body of water, in contrast to land-based terrestrial ecosystems. Aquatic ecosystems contain communities of organisms—aquatic life—that are dependent on each other and on their environ ...
**
Freshwater ecosystem Freshwater ecosystems are a subset of Earth's aquatic ecosystems that include the biological communities inhabiting freshwater waterbodies such as lakes, ponds, rivers, streams, springs, bogs, and wetlands. They can be contrasted with marine ec ...
*** Lake ecosystem (lentic ecosystem) *** River ecosystem (lotic ecosystem) **
Marine ecosystem Marine ecosystems are the largest of Earth's aquatic ecosystems and exist in Saline water, waters that have a high salt content. These systems contrast with freshwater ecosystems, which have a lower salt content. Marine waters cover more than 7 ...
*** Large marine ecosystem ** Tropical salt pond ecosystem *
Terrestrial ecosystem Terrestrial ecosystems are ecosystems that are found on land. Examples include tundra, taiga, temperate deciduous forest, tropical rain forest, grassland, deserts. Terrestrial ecosystems differ from aquatic ecosystems by the predominant presen ...
**
Boreal ecosystem A boreal ecosystem is an ecosystem with a subarctic climate located in the Northern Hemisphere, approximately between 50° and 70°N latitude. These ecosystems are commonly known as taiga and are located in parts of North America, Europe, and Asia ...
** Groundwater-dependent ecosystems ** Montane ecosystem ** Urban ecosystem ; Ecosystems grouped by condition: * Agroecosystem * Closed ecosystem * Depauperate ecosystem * Novel ecosystem * Reference ecosystem


Instances

Ecosystem instances in specific regions of the world: * Greater Yellowstone Ecosystem * Leuser Ecosystem * Longleaf pine Ecosystem *
Tarangire Ecosystem The Tarangire Ecosystem () is a geographical region in northern Tanzania, Africa. It extends between 2.5 and 5.5 degrees south latitudes and between 35.5 and 37 degrees east longitudes. The Tarangire Ecosystem hosts the second-largest population ...


References


External links

* * * * {{Authority control