HOME

TheInfoList



OR:

Dysferlin also known as dystrophy-associated fer-1-like protein is a
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
that in humans is encoded by the ''DYSF''
gene In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protei ...
. Dysferlin is linked with plasma membrane repair., stabilization of calcium signaling and the development of the T-tubule system of the muscle A defect in the DYSF gene, located on
chromosome 2 Chromosome 2 is one of the twenty-three pairs of chromosomes in humans. People normally have two copies of this chromosome. Chromosome 2 is the second-largest human chromosome, spanning more than 242 million base pairs and representing almost ei ...
p12-14, results in several types of
muscular dystrophy Muscular dystrophies (MD) are a genetically and clinically heterogeneous group of rare neuromuscular diseases that cause progressive weakness and breakdown of skeletal muscles over time. The disorders differ as to which muscles are primarily affe ...
; including Miyoshi myopathy (MM), Limb-girdle muscular dystrophy type 2B (LGMD2B) and Distal Myopathy (DM). A reduction or absence of dysferlin, termed dysferlinopathy, usually becomes apparent in the third or fourth decade of life and is characterised by weakness and wasting of various voluntary
skeletal muscles Skeletal muscle (commonly referred to as muscle) is one of the three types of vertebrate muscle tissue, the others being cardiac muscle and smooth muscle. They are part of the somatic nervous system, voluntary muscular system and typically are a ...
. Pathogenic mutations leading to dysferlinopathy can occur throughout the DYSF gene.


Structure

The human dysferlin protein is a 237 kilodalton type-II transmembrane protein. It contains a large intracellular cytoplasmic N-terminal domain, an extreme C-terminal transmembrane domain, and a short C-terminal extracellular domain. The cytosolic domain of dysferlin is composed of seven highly conserved C2 domains (C2A-G) which are conserved across several proteins within the ferlin family, including dysferlin homolog myoferlin. In fact, the C2 domain at any given position is more similar to the C2 domain at the corresponding position within other ferlin family members than the adjacent C2 domain within the same protein. This suggests that each individual C2 domain may in fact play a specific role in dysferlin function and each has in fact been shown to be required for two of dysferlin's roles stabilization of calcium signaling and membrane repair. Mutations in each of these domains can cause dysferlinopathy. A crystal structure of the C2A domain of human dysferlin has been solved, and reveals that the C2A domain changes conformation when interacting with calcium ions, which is consistent with a growing body of evidence suggesting that the C2A domain plays a role in calcium-dependent lipid binding. Its ability to stabilize calcium signaling in the intact dysferlin protein depends on its calcium binding activity. In addition to the C2 domains, dysferlin also contains "FerA" and "DysF" domains. Mutations in both FerA and DysF can cause muscular dystrophies. DysF domain has an interesting structure as in contains one DysF domain within another DysF domain, a result of gene duplication; however, the function of this domain is currently unknown. FerA domain is conserved among all members of ferlin protein family. FerA domain is a four helix bundle and it can interact with membrane, usually in a calcium-dependent manner.


Function

The most intensively studied role for dysferlin is in a cellular process called membrane repair. Membrane repair is a critical mechanism by which cells are able to seal dramatic wounds to the plasma membrane. Muscle is thought to be particularly prone to membrane wounds given that muscle cells transmit high force and undergo cycles of contraction. Dysferlin is highly expressed in muscle, and is homologous to the ferlin family of proteins, which are thought to regulate membrane fusion across a wide variety of species and cell types. Several lines of evidence suggest that dysferlin may be involved in membrane repair in muscle. First, dysferlin-deficient muscle fibers show accumulation of vesicles (which are critical for membrane repair in non-muscle cell types) near membrane lesions, indicating that dysferlin may be required for fusion of repair vesicles with the plasma membrane. Further, dysferlin-deficient muscle fibers take up extracellular dyes to a greater extent than wild-type muscle fibers following laser-induced wounding in-vitro. Dysferlin is also markedly enriched at membrane lesions with several additional proteins thought to be involved in membrane resealing, including annexin and MG53. Exactly how dysferlin contributes to membrane resealing is not clear, but biochemical evidence indicates that dysferlin may bind lipids in a calcium-dependent manner, consistent with a role for dysferlin in regulating fusion of repair vesicles with the sarcolemma during membrane repair. Furthermore, live-cell imaging of dysferlin-eGFP expressing myotubes indicates that dysferlin localizes to a cellular compartment that responds to injury by forming large dysferlin-containing vesicles, and formation of these vesicles may contribute to wound repair. Dysferlin may also be involved in Alzheimer's disease pathogenesis. Another well studied role for dysferlin is in stabilization of calcium signaling, especially following a mild injury. This approach was based on two observations: that muscle lacking dysferlin that is injured by eccentric contractions can repair its plasma membrane, or sarcolemma, as efficiently as healthy muscle can, and that most of the dysferlin in healthy muscle is concentrated in the transverse tubules at triad junctions, where calcium release is regulated. Destabilization of signaling in dysferlinopathic muscle can result in the generation of calcium waves, which can contribute to the disease pathology. Nearly every change in dysferlin that affects membrane repair also destabilizes calcium signaling, suggesting that these two activities are closely linked. Remarkably, however, membrane repair requires calcium ions, whereas calcium ions contribute to the destabilization of signaling when dysferlin is absent or mutated. These paradoxical results have yet to be reconciled.


Interactions

Dysferlin has been shown to bind to itself, to form dimers and perhaps larger oligomers. It can also has been shown to interact with
Caveolin 3 Caveolin-3 is a protein that in humans is encoded by the ''CAV3'' gene. Alternative splicing has been identified for this locus, with inclusion or exclusion of a differentially spliced intron. In addition, transcripts utilize multiple polyA sites ...
in skeletal muscle, and this interaction is thought to retain dysferlin within the plasma membrane. Dysferlin also interacts with MG53, and a functional interaction between dysferlin, caveolin-3 and MG53 is thought to be critical for membrane repair in skeletal muscle.


References


Further reading

* * * * * * * * * * * * * * * * * * * *


External links


GeneReviews/NCBI/NIH/UW entry on Dysferlinopathy including Miyoshi Distal Myopathy (Miyoshi Myopathy), Limb-Girdle Muscular Dystrophy Type 2B (LGMD2B)
* LOVD mutation database
DYSF
{{Other cell membrane proteins Proteins