In
geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
,
polygon
In geometry, a polygon () is a plane figure that is described by a finite number of straight line segments connected to form a closed '' polygonal chain'' (or ''polygonal circuit''). The bounded plane region, the bounding circuit, or the two t ...
s are associated into pairs called duals, where the
vertices of one correspond to the
edges of the other.
Properties
Regular polygon
In Euclidean geometry, a regular polygon is a polygon that is direct equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygons may be either convex, star or skew. In the limit, a sequence ...
s are
self-dual.
The dual of an
isogonal (vertex-transitive) polygon is an
isotoxal
In geometry, a polytope (for example, a polygon or a polyhedron) or a tiling is isotoxal () or edge-transitive if its symmetries act transitively on its edges. Informally, this means that there is only one type of edge to the object: given two ...
(edge-transitive) polygon. For example, the (isogonal)
rectangle and (isotoxal)
rhombus
In plane Euclidean geometry, a rhombus (plural rhombi or rhombuses) is a quadrilateral whose four sides all have the same length. Another name is equilateral quadrilateral, since equilateral means that all of its sides are equal in length. Th ...
are duals.
In a
cyclic polygon
In geometry, the circumscribed circle or circumcircle of a polygon is a circle that passes through all the vertices of the polygon. The center of this circle is called the circumcenter and its radius is called the circumradius.
Not every polyg ...
, longer sides correspond to larger
exterior angles in the dual (a
tangential polygon), and shorter sides to smaller angles. Further, congruent sides in the original polygon yields congruent angles in the dual, and conversely. For example, the dual of a highly acute
isosceles triangle
In geometry, an isosceles triangle () is a triangle that has two sides of equal length. Sometimes it is specified as having ''exactly'' two sides of equal length, and sometimes as having ''at least'' two sides of equal length, the latter versio ...
is an obtuse isosceles triangle.
In the
Dorman Luke construction
In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the oth ...
, each face of a
dual polyhedron
In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the othe ...
is the dual polygon of the corresponding
vertex figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.
Definitions
Take some corner or vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw lines ...
.
Duality in quadrilaterals
As an example of the side-angle duality of polygons we compare properties of the
cyclic and
tangential quadrilaterals.
[Michael de Villiers, ''Some Adventures in Euclidean Geometry'', , 2009, p. 55.]
This duality is perhaps even more clear when comparing an
isosceles trapezoid
In Euclidean geometry, an isosceles trapezoid (isosceles trapezium in British English) is a convex quadrilateral with a line of symmetry bisecting one pair of opposite sides. It is a special case of a trapezoid. Alternatively, it can be defi ...
to a
kite
A kite is a tethered heavier than air flight, heavier-than-air or lighter-than-air craft with wing surfaces that react against the air to create Lift (force), lift and Drag (physics), drag forces. A kite consists of wings, tethers and anchors. ...
.
Kinds of duality
Rectification
The simplest qualitative construction of a dual polygon is a
rectification
Rectification has the following technical meanings:
Mathematics
* Rectification (geometry), truncating a polytope by marking the midpoints of all its edges, and cutting off its vertices at those points
* Rectifiable curve, in mathematics
* Recti ...
operation, where the edges of a polygon are
truncated down to vertices at the center of each original edge. New edges are formed between these new vertices.
This construction is not reversible. That is, the polygon generated by applying it twice is in general not similar to the original polygon.
Polar reciprocation
As with dual polyhedra, one can take a circle (be it the
inscribed circle,
circumscribed circle
In geometry, the circumscribed circle or circumcircle of a polygon is a circle that passes through all the vertices of the polygon. The center of this circle is called the circumcenter and its radius is called the circumradius.
Not every poly ...
, or if both exist, their
midcircle) and perform
polar reciprocation in it.
Projective duality
Under
projective duality, the dual of a point is a line, and of a line is a point – thus the dual of a polygon is a polygon, with edges of the original corresponding to vertices of the dual and conversely.
From the point of view of the
dual curve, where to each point on a curve one associates the point dual to its tangent line at that point, the projective dual can be interpreted thus:
* every point on a side of a polygon has the same tangent line, which agrees with the side itself – they thus all map to the same vertex in the dual polygon
* at a vertex, the "tangent lines" to that vertex are all lines through that point with angle between the two edges – the dual points to these lines are then the edge in the dual polygon.
Combinatorially
Combinatorially, one can define a polygon as a set of vertices, a set of edges, and an incidence relation (which vertices and edges touch): two adjacent vertices determine an edge, and dually, two adjacent edges determine a vertex. Then the dual polygon is obtained by simply switching the vertices and edges.
Thus for the triangle with vertices and edges , the dual triangle has vertices , and edges , where B connects AB & BC, and so forth.
This is not a particularly fruitful avenue, as combinatorially, there is a single family of polygons (given by number of sides); geometric duality of polygons is more varied, as are combinatorial
dual polyhedra.
See also
*
Dual curve
*
Dual polyhedron
In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the othe ...
*
Self-dual polygon
References
External links
Dual Polygon Appletby
Don Hatch
Don, don or DON and variants may refer to:
Places
*County Donegal, Ireland, Chapman code DON
*Don (river), a river in European Russia
*Don River (disambiguation), several other rivers with the name
*Don, Benin, a town in Benin
*Don, Dang, a vill ...
{{DEFAULTSORT:Dual Polygon
Polygons