In
topology
Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
, a discrete space is a particularly simple example of a
topological space
In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
or similar structure, one in which the points form a , meaning they are ''
isolated'' from each other in a certain sense. The discrete topology is the
finest topology that can be given on a set. Every subset is
open
Open or OPEN may refer to:
Music
* Open (band), Australian pop/rock band
* The Open (band), English indie rock band
* ''Open'' (Blues Image album), 1969
* ''Open'' (Gerd Dudek, Buschi Niebergall, and Edward Vesala album), 1979
* ''Open'' (Go ...
in the discrete topology so that in particular, every
singleton subset is an
open set
In mathematics, an open set is a generalization of an Interval (mathematics)#Definitions_and_terminology, open interval in the real line.
In a metric space (a Set (mathematics), set with a metric (mathematics), distance defined between every two ...
in the discrete topology.
Definitions
Given a set
:
A metric space
is said to be ''
uniformly discrete'' if there exists a '
such that, for any
one has either
or
The topology underlying a metric space can be discrete, without the metric being uniformly discrete: for example the usual metric on the set
Properties
The underlying uniformity on a discrete metric space is the discrete uniformity, and the underlying topology on a discrete uniform space is the discrete topology.
Thus, the different notions of discrete space are compatible with one another.
On the other hand, the underlying topology of a non-discrete uniform or metric space can be discrete; an example is the metric space
(with metric inherited from the
real line
A number line is a graphical representation of a straight line that serves as spatial representation of numbers, usually graduated like a ruler with a particular origin (geometry), origin point representing the number zero and evenly spaced mark ...
and given by
).
This is not the discrete metric; also, this space is not
complete and hence not discrete as a uniform space.
Nevertheless, it is discrete as a topological space.
We say that
is ''topologically discrete'' but not ''uniformly discrete'' or ''metrically discrete''.
Additionally:
* The
topological dimension
In mathematics, the Lebesgue covering dimension or topological dimension of a topological space is one of several different ways of defining the dimension of the space in a
topologically invariant way.
Informal discussion
For ordinary Euclidean ...
of a discrete space is equal to 0.
* A topological space is discrete if and only if its
singletons are open, which is the case if and only if it does not contain any
accumulation point
In mathematics, a limit point, accumulation point, or cluster point of a Set (mathematics), set S in a topological space X is a point x that can be "approximated" by points of S in the sense that every neighbourhood (mathematics), neighbourhood of ...
s.
* The singletons form a
basis for the discrete topology.
* A uniform space
is discrete if and only if the diagonal
is an
entourage.
* Every discrete topological space satisfies each of the
separation axioms
In topology and related fields of mathematics, there are several restrictions that one often makes on the kinds of topological spaces that one wishes to consider. Some of these restrictions are given by the separation axioms. These are sometimes ...
; in particular, every discrete space is
Hausdorff, that is, separated.
* A discrete space is
compact
Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to:
* Interstate compact, a type of agreement used by U.S. states
* Blood compact, an ancient ritual of the Philippines
* Compact government, a t ...
if and only if
In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
it is
finite
Finite may refer to:
* Finite set, a set whose cardinality (number of elements) is some natural number
* Finite verb, a verb form that has a subject, usually being inflected or marked for person and/or tense or aspect
* "Finite", a song by Sara Gr ...
.
* Every discrete uniform or metric space is
complete.
* Combining the above two facts, every discrete uniform or metric space is
totally bounded
In topology and related branches of mathematics, total-boundedness is a generalization of compactness for circumstances in which a set is not necessarily closed. A totally bounded set can be covered by finitely many subsets of every fixed “si ...
if and only if it is finite.
* Every discrete metric space is
bounded.
* Every discrete space is
first-countable
In topology, a branch of mathematics, a first-countable space is a topological space satisfying the "first axiom of countability". Specifically, a space X is said to be first-countable if each point has a countable neighbourhood basis (local base ...
; it is moreover
second-countable
In topology, a second-countable space, also called a completely separable space, is a topological space whose topology has a countable base. More explicitly, a topological space T is second-countable if there exists some countable collection \mat ...
if and only if it is
countable
In mathematics, a Set (mathematics), set is countable if either it is finite set, finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function fro ...
.
* Every discrete space is
totally disconnected
In topology and related branches of mathematics, a totally disconnected space is a topological space that has only singletons as connected subsets. In every topological space, the singletons (and, when it is considered connected, the empty set) ...
.
* Every non-empty discrete space is
second category.
* Any two discrete spaces with the same
cardinality
The thumb is the first digit of the hand, next to the index finger. When a person is standing in the medical anatomical position (where the palm is facing to the front), the thumb is the outermost digit. The Medical Latin English noun for thum ...
are
homeomorphic
In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function betw ...
.
* Every discrete space is metrizable (by the discrete metric).
* A finite space is metrizable only if it is discrete.
* If
is a topological space and
is a set carrying the discrete topology, then
is evenly covered by
(the projection map is the desired covering)
* The
subspace topology
In topology and related areas of mathematics, a subspace of a topological space (''X'', ''𝜏'') is a subset ''S'' of ''X'' which is equipped with a topology induced from that of ''𝜏'' called the subspace topology (or the relative topology ...
on the
integers
An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
as a subspace of the
real line
A number line is a graphical representation of a straight line that serves as spatial representation of numbers, usually graduated like a ruler with a particular origin (geometry), origin point representing the number zero and evenly spaced mark ...
is the discrete topology.
* A discrete space is separable if and only if it is countable.
* Any topological subspace of
(with its usual
Euclidean topology
In mathematics, and especially general topology, the Euclidean topology is the natural topology induced on n-dimensional Euclidean space \R^n by the Euclidean metric.
Definition
The Euclidean norm on \R^n is the non-negative function \, \cdot ...
) that is discrete is necessarily
countable
In mathematics, a Set (mathematics), set is countable if either it is finite set, finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function fro ...
.
Any function from a discrete topological space to another topological space is
continuous, and any function from a discrete uniform space to another uniform space is
uniformly continuous. That is, the discrete space
is
free on the set
in the
category
Category, plural categories, may refer to:
General uses
*Classification, the general act of allocating things to classes/categories Philosophy
* Category of being
* ''Categories'' (Aristotle)
* Category (Kant)
* Categories (Peirce)
* Category ( ...
of topological spaces and continuous maps or in the category of uniform spaces and uniformly continuous maps. These facts are examples of a much broader phenomenon, in which discrete structures are usually free on sets.
With metric spaces, things are more complicated, because there are several categories of metric spaces, depending on what is chosen for the
morphism
In mathematics, a morphism is a concept of category theory that generalizes structure-preserving maps such as homomorphism between algebraic structures, functions from a set to another set, and continuous functions between topological spaces. Al ...
s. Certainly the discrete metric space is free when the morphisms are all uniformly continuous maps or all continuous maps, but this says nothing interesting about the metric
structure
A structure is an arrangement and organization of interrelated elements in a material object or system, or the object or system so organized. Material structures include man-made objects such as buildings and machines and natural objects such as ...
, only the uniform or topological structure. Categories more relevant to the metric structure can be found by limiting the morphisms to
Lipschitz continuous
In mathematical analysis, Lipschitz continuity, named after Germany, German mathematician Rudolf Lipschitz, is a strong form of uniform continuity for function (mathematics), functions. Intuitively, a Lipschitz continuous function is limited in h ...
maps or to
short map
In the mathematical theory of metric spaces, a metric map is a function between metric spaces that does not increase any distance. These maps are the morphisms in the category of metric spaces, Met. Such functions are always continuous functions ...
s; however, these categories don't have free objects (on more than one element). However, the discrete metric space is free in the category of
bounded metric spaces and Lipschitz continuous maps, and it is free in the category of metric spaces bounded by 1 and short maps. That is, any function from a discrete metric space to another bounded metric space is Lipschitz continuous, and any function from a discrete metric space to another metric space bounded by 1 is short.
Going the other direction, a function
from a topological space
to a discrete space
is continuous if and only if it is ''
locally constant'' in the sense that every point in
has a
neighborhood
A neighbourhood (Commonwealth English) or neighborhood (American English) is a geographically localized community within a larger town, city, suburb or rural area, sometimes consisting of a single street and the buildings lining it. Neigh ...
on which
is constant.
Every
ultrafilter
In the Mathematics, mathematical field of order theory, an ultrafilter on a given partially ordered set (or "poset") P is a certain subset of P, namely a Maximal element, maximal Filter (mathematics), filter on P; that is, a proper filter on P th ...
on a non-empty set
can be associated with a topology
on
with the property that non-empty proper subset
of
is an
open subset
In mathematics, an open set is a generalization of an open interval in the real line.
In a metric space (a set with a distance defined between every two points), an open set is a set that, with every point in it, contains all points of the met ...
or else a
closed subset
In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a cl ...
, but never both. Said differently, subset is open
or closed but (in contrast to the discrete topology) the subsets that are open and closed (i.e.
clopen
In topology, a clopen set (a portmanteau of closed-open set) in a topological space is a set which is both open and closed. That this is possible may seem counterintuitive, as the common meanings of and are antonyms, but their mathematical def ...
) are
and
. In comparison, subset of
is open
and closed in the discrete topology.
Examples and uses
A discrete structure is often used as the "default structure" on a set that doesn't carry any other natural topology, uniformity, or metric; discrete structures can often be used as "extreme" examples to test particular suppositions. For example, any
group
A group is a number of persons or things that are located, gathered, or classed together.
Groups of people
* Cultural group, a group whose members share the same cultural identity
* Ethnic group, a group whose members share the same ethnic iden ...
can be considered as a
topological group
In mathematics, topological groups are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures ...
by giving it the discrete topology, implying that theorems about topological groups apply to all groups. Indeed, analysts may refer to the ordinary, non-topological groups studied by algebraists as "
discrete group
In mathematics, a topological group ''G'' is called a discrete group if there is no limit point in it (i.e., for each element in ''G'', there is a neighborhood which only contains that element). Equivalently, the group ''G'' is discrete if and ...
s". In some cases, this can be usefully applied, for example in combination with
Pontryagin duality. A 0-dimensional
manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a N ...
(or differentiable or analytic manifold) is nothing but a discrete and countable topological space (an uncountable discrete space is not second-countable). We can therefore view any discrete countable group as a 0-dimensional
Lie group
In mathematics, a Lie group (pronounced ) is a group (mathematics), group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable.
A manifold is a space that locally resembles Eucli ...
.
A
product of
countably infinite
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbe ...
copies of the discrete space of
natural number
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
s is
homeomorphic
In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function betw ...
to the space of
irrational number
In mathematics, the irrational numbers are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two integers. When the ratio of lengths of two line segments is an irrational number, ...
s, with the homeomorphism given by the
continued fraction expansion. A product of countably infinite copies of the discrete space
is homeomorphic to the
Cantor set
In mathematics, the Cantor set is a set of points lying on a single line segment that has a number of unintuitive properties. It was discovered in 1874 by Henry John Stephen Smith and mentioned by German mathematician Georg Cantor in 1883.
Throu ...
; and in fact
uniformly homeomorphic to the Cantor set if we use the
product uniformity on the product. Such a homeomorphism is given by using
ternary notation of numbers. (See
Cantor space
In mathematics, a Cantor space, named for Georg Cantor, is a topological abstraction of the classical Cantor set: a topological space is a Cantor space if it is homeomorphic to the Cantor set. In set theory, the topological space 2ω is called "the ...
.) Every
fiber
Fiber (spelled fibre in British English; from ) is a natural or artificial substance that is significantly longer than it is wide. Fibers are often used in the manufacture of other materials. The strongest engineering materials often inco ...
of a
locally injective function In mathematics, a mathematical object is said to satisfy a property locally, if the property is satisfied on some limited, immediate portions of the object (e.g., on some ''sufficiently small'' or ''arbitrarily small'' neighborhoods of points).
P ...
is necessarily a discrete subspace of its
domain.
In the
foundations of mathematics
Foundations of mathematics are the mathematical logic, logical and mathematics, mathematical framework that allows the development of mathematics without generating consistency, self-contradictory theories, and to have reliable concepts of theo ...
, the study of
compactness
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it ...
properties of products of
is central to the topological approach to the
ultrafilter lemma
In the mathematical field of set theory, an ultrafilter on a set X is a ''maximal filter'' on the set X. In other words, it is a collection of subsets of X that satisfies the definition of a filter on X and that is maximal with respect to incl ...
(equivalently, the
Boolean prime ideal theorem
In mathematics, the Boolean prime ideal theorem states that Ideal (order theory), ideals in a Boolean algebra (structure), Boolean algebra can be extended to Ideal (order theory)#Prime ideals , prime ideals. A variation of this statement for Filte ...
), which is a weak form of the
axiom of choice
In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory. Informally put, the axiom of choice says that given any collection of non-empty sets, it is possible to construct a new set by choosing one element from e ...
.
Indiscrete spaces
In some ways, the opposite of the discrete topology is the
trivial topology In topology, a topological space with the trivial topology is one where the only open sets are the empty set and the entire space. Such spaces are commonly called indiscrete, anti-discrete, concrete or codiscrete. Intuitively, this has the conseque ...
(also called the ''indiscrete topology''), which has the fewest possible open sets (just the
empty set
In mathematics, the empty set or void set is the unique Set (mathematics), set having no Element (mathematics), elements; its size or cardinality (count of elements in a set) is 0, zero. Some axiomatic set theories ensure that the empty set exi ...
and the space itself). Where the discrete topology is initial or free, the indiscrete topology is final or
cofree: every function ''from'' a topological space ''to'' an indiscrete space is continuous, etc.
See also
*
Cylinder set
*
List of topologies
The following is a list of named topologies or topological spaces, many of which are counterexamples in topology and related branches of mathematics. This is not a list of properties that a topology or topological space might possess; for that, ...
*
Taxicab geometry
Taxicab geometry or Manhattan geometry is geometry where the familiar Euclidean distance is ignored, and the distance between two points is instead defined to be the sum of the absolute differences of their respective Cartesian coordinates, a dis ...
References
*
*
{{Metric spaces
General topology
Metric spaces
Topological spaces
Topology