HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a
topological group In mathematics, topological groups are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures ...
''G'' is called a discrete group if there is no
limit point In mathematics, a limit point, accumulation point, or cluster point of a set S in a topological space X is a point x that can be "approximated" by points of S in the sense that every neighbourhood of x contains a point of S other than x itself. A ...
in it (i.e., for each element in ''G'', there is a neighborhood which only contains that element). Equivalently, the group ''G'' is discrete if and only if its identity is isolated. A
subgroup In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G. Formally, given a group (mathematics), group under a binary operation  ...
''H'' of a topological group ''G'' is a discrete subgroup if ''H'' is discrete when endowed with the
subspace topology In topology and related areas of mathematics, a subspace of a topological space (''X'', ''𝜏'') is a subset ''S'' of ''X'' which is equipped with a topology induced from that of ''𝜏'' called the subspace topology (or the relative topology ...
from ''G''. In other words there is a neighbourhood of the identity in ''G'' containing no other element of ''H''. For example, the
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s, Z, form a discrete subgroup of the reals, R (with the standard
metric topology In mathematics, a metric space is a set together with a notion of ''distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are a general setting for ...
), but the
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set of all ...
s, Q, do not. Any group can be endowed with the
discrete topology In topology, a discrete space is a particularly simple example of a topological space or similar structure, one in which the points form a , meaning they are '' isolated'' from each other in a certain sense. The discrete topology is the finest to ...
, making it a discrete topological group. Since every map from a discrete space is continuous, the topological homomorphisms between discrete groups are exactly the
group homomorphism In mathematics, given two groups, (''G'',∗) and (''H'', ·), a group homomorphism from (''G'',∗) to (''H'', ·) is a function ''h'' : ''G'' → ''H'' such that for all ''u'' and ''v'' in ''G'' it holds that : h(u*v) = h(u) \cdot h(v) whe ...
s between the underlying groups. Hence, there is an
isomorphism In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
between the
category of groups In mathematics, the category Grp (or Gp) has the class of all groups for objects and group homomorphisms for morphisms. As such, it is a concrete category. The study of this category is known as group theory. Relation to other categories The ...
and the category of discrete groups. Discrete groups can therefore be identified with their underlying (non-topological) groups. There are some occasions when a
topological group In mathematics, topological groups are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures ...
or
Lie group In mathematics, a Lie group (pronounced ) is a group (mathematics), group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable. A manifold is a space that locally resembles Eucli ...
is usefully endowed with the discrete topology, 'against nature'. This happens for example in the theory of the Bohr compactification, and in
group cohomology In mathematics (more specifically, in homological algebra), group cohomology is a set of mathematical tools used to study groups using cohomology theory, a technique from algebraic topology. Analogous to group representations, group cohomology ...
theory of Lie groups. A discrete
isometry group In mathematics, the isometry group of a metric space is the set of all bijective isometries (that is, bijective, distance-preserving maps) from the metric space onto itself, with the function composition as group operation. Its identity element ...
is an isometry group such that for every point of the metric space the set of images of the point under the isometries is a
discrete set In mathematics, a point (topology), point is called an isolated point of a subset (in a topological space ) if is an element of and there exists a Neighborhood (mathematics), neighborhood of that does not contain any other points of . This i ...
. A discrete
symmetry group In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the amb ...
is a symmetry group that is a discrete isometry group.


Properties

Since topological groups are
homogeneous Homogeneity and heterogeneity are concepts relating to the uniformity of a substance, process or image. A homogeneous feature is uniform in composition or character (i.e., color, shape, size, weight, height, distribution, texture, language, i ...
, one need only look at a single point to determine if the topological group is discrete. In particular, a topological group is discrete only if the singleton containing the identity is an
open set In mathematics, an open set is a generalization of an Interval (mathematics)#Definitions_and_terminology, open interval in the real line. In a metric space (a Set (mathematics), set with a metric (mathematics), distance defined between every two ...
. A discrete group is the same thing as a zero-dimensional
Lie group In mathematics, a Lie group (pronounced ) is a group (mathematics), group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable. A manifold is a space that locally resembles Eucli ...
(
uncountable In mathematics, an uncountable set, informally, is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal number is larger tha ...
discrete groups are not
second-countable In topology, a second-countable space, also called a completely separable space, is a topological space whose topology has a countable base. More explicitly, a topological space T is second-countable if there exists some countable collection \mat ...
, so authors who require Lie groups to have this property do not regard these groups as Lie groups). The
identity component In mathematics, specifically group theory, the identity component of a group (mathematics) , group ''G'' (also known as its unity component) refers to several closely related notions of the largest connected space , connected subgroup of ''G'' co ...
of a discrete group is just the
trivial subgroup In mathematics, a trivial group or zero group is a group that consists of a single element. All such groups are isomorphic, so one often speaks of the trivial group. The single element of the trivial group is the identity element and so it is usu ...
while the
group of components In mathematics, specifically group theory, the identity component of a group ''G'' (also known as its unity component) refers to several closely related notions of the largest connected subgroup of ''G'' containing the identity element. In po ...
is isomorphic to the group itself. Since the only Hausdorff topology on a finite set is the discrete one, a finite Hausdorff topological group must necessarily be discrete. It follows that every finite subgroup of a Hausdorff group is discrete. A discrete subgroup ''H'' of ''G'' is cocompact if there is a compact subset ''K'' of ''G'' such that ''HK'' = ''G''. Discrete
normal subgroup In abstract algebra, a normal subgroup (also known as an invariant subgroup or self-conjugate subgroup) is a subgroup that is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup N of the group ...
s play an important role in the theory of
covering group In mathematics, a covering group of a topological group ''H'' is a covering space ''G'' of ''H'' such that ''G'' is a topological group and the covering map is a continuous (topology), continuous group homomorphism. The map ''p'' is called the c ...
s and
locally isomorphic groups In mathematics, a mathematical object is said to satisfy a property locally, if the property is satisfied on some limited, immediate portions of the object (e.g., on some ''sufficiently small'' or ''arbitrarily small'' neighborhoods of points). P ...
. A discrete normal subgroup of a connected group ''G'' necessarily lies in the center of ''G'' and is therefore abelian. ''Other properties'': *every discrete group is
totally disconnected In topology and related branches of mathematics, a totally disconnected space is a topological space that has only singletons as connected subsets. In every topological space, the singletons (and, when it is considered connected, the empty set) ...
*every subgroup of a discrete group is discrete. *every
quotient In arithmetic, a quotient (from 'how many times', pronounced ) is a quantity produced by the division of two numbers. The quotient has widespread use throughout mathematics. It has two definitions: either the integer part of a division (in th ...
of a discrete group is discrete. *the product of a finite number of discrete groups is discrete. *a discrete group is
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact, a type of agreement used by U.S. states * Blood compact, an ancient ritual of the Philippines * Compact government, a t ...
if and only if it is finite. *every discrete group is
locally compact In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which e ...
. *every discrete subgroup of a Hausdorff group is closed. *every discrete subgroup of a compact Hausdorff group is finite.


Examples

* Frieze groups and
wallpaper group A wallpaper group (or plane symmetry group or plane crystallographic group) is a mathematical classification of a two-dimensional repetitive pattern, based on the symmetry, symmetries in the pattern. Such patterns occur frequently in architecture a ...
s are discrete subgroups of the
isometry group In mathematics, the isometry group of a metric space is the set of all bijective isometries (that is, bijective, distance-preserving maps) from the metric space onto itself, with the function composition as group operation. Its identity element ...
of the Euclidean plane. Wallpaper groups are cocompact, but Frieze groups are not. * A
crystallographic group In mathematics, physics and chemistry, a space group is the symmetry group of a repeating pattern in space, usually in three dimensions. The elements of a space group (its symmetry operations) are the rigid transformations of the pattern that ...
usually means a cocompact, discrete subgroup of the isometries of some Euclidean space. Sometimes, however, a
crystallographic group In mathematics, physics and chemistry, a space group is the symmetry group of a repeating pattern in space, usually in three dimensions. The elements of a space group (its symmetry operations) are the rigid transformations of the pattern that ...
can be a cocompact discrete subgroup of a nilpotent or solvable Lie group. * Every
triangle group In mathematics, a triangle group is a group that can be realized geometrically by sequences of reflections across the sides of a triangle. The triangle can be an ordinary Euclidean triangle, a triangle on the sphere, or a hyperbolic triang ...
''T'' is a discrete subgroup of the isometry group of the sphere (when ''T'' is finite), the Euclidean plane (when ''T'' has a Z + Z subgroup of finite
index Index (: indexes or indices) may refer to: Arts, entertainment, and media Fictional entities * Index (''A Certain Magical Index''), a character in the light novel series ''A Certain Magical Index'' * The Index, an item on the Halo Array in the ...
), or the
hyperbolic plane In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai– Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For any given line ''R'' and point ''P' ...
. * Fuchsian groups are, by definition, discrete subgroups of the isometry group of the hyperbolic plane. ** A Fuchsian group that preserves orientation and acts on the upper half-plane model of the hyperbolic plane is a discrete subgroup of the Lie group PSL(2,R), the group of orientation preserving isometries of the
upper half-plane In mathematics, the upper half-plane, is the set of points in the Cartesian plane with The lower half-plane is the set of points with instead. Arbitrary oriented half-planes can be obtained via a planar rotation. Half-planes are an example ...
model of the hyperbolic plane. ** A Fuchsian group is sometimes considered as a special case of a
Kleinian group In mathematics, a Kleinian group is a discrete subgroup of the group (mathematics), group of orientation-preserving Isometry, isometries of hyperbolic 3-space . The latter, identifiable with PSL(2,C), , is the quotient group of the 2 by 2 complex ...
, by embedding the hyperbolic plane isometrically into three-dimensional hyperbolic space and extending the group action on the plane to the whole space. ** The
modular group In mathematics, the modular group is the projective special linear group \operatorname(2,\mathbb Z) of 2\times 2 matrices with integer coefficients and determinant 1, such that the matrices A and -A are identified. The modular group acts on ...
PSL(2,Z) is thought of as a discrete subgroup of PSL(2,R). The modular group is a lattice in PSL(2,R), but it is not cocompact. *
Kleinian group In mathematics, a Kleinian group is a discrete subgroup of the group (mathematics), group of orientation-preserving Isometry, isometries of hyperbolic 3-space . The latter, identifiable with PSL(2,C), , is the quotient group of the 2 by 2 complex ...
s are, by definition, discrete subgroups of the isometry group of hyperbolic 3-space. These include quasi-Fuchsian groups. ** A Kleinian group that preserves orientation and acts on the upper half space model of hyperbolic 3-space is a discrete subgroup of the Lie group PSL(2,C), the group of orientation preserving isometries of the upper half-space model of hyperbolic 3-space. * A lattice in a
Lie group In mathematics, a Lie group (pronounced ) is a group (mathematics), group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable. A manifold is a space that locally resembles Eucli ...
is a discrete subgroup such that the
Haar measure In mathematical analysis, the Haar measure assigns an "invariant volume" to subsets of locally compact topological groups, consequently defining an integral for functions on those groups. This Measure (mathematics), measure was introduced by Alfr� ...
of the quotient space is finite.


See also

*
crystallographic point group In crystallography, a crystallographic point group is a three-dimensional point group whose symmetry operations are compatible with a three-dimensional crystallographic lattice. According to the crystallographic restriction it may only contain o ...
* congruence subgroup *
arithmetic group In mathematics, an arithmetic group is a group obtained as the integer points of an algebraic group, for example \mathrm_2(\Z). They arise naturally in the study of arithmetic properties of quadratic forms and other classical topics in number theor ...
*
geometric group theory Geometric group theory is an area in mathematics devoted to the study of finitely generated groups via exploring the connections between algebraic properties of such groups and topological and geometric properties of spaces on which these group ...
*
computational group theory In mathematics, computational group theory is the study of group (mathematics), groups by means of computers. It is concerned with designing and analysing algorithms and data structures to compute information about groups. The subject has attracte ...
* freely discontinuous *
free regular set In mathematics, a group action of a group G on a set (mathematics), set S is a group homomorphism from G to some group (under function composition) of functions from S to itself. It is said that G acts on S. Many sets of transformation (functi ...


Citations


References

* * *


External links

* {{DEFAULTSORT:Discrete Group Geometric group theory