HOME

TheInfoList



OR:

In embryology, cleavage is the division of cells in the early development of the embryo, following fertilization. The zygotes of many species undergo rapid cell cycles with no significant overall growth, producing a cluster of cells the same size as the original zygote. The different cells derived from cleavage are called blastomeres and form a compact mass called the morula. Cleavage ends with the formation of the blastula, or of the
blastocyst The blastocyst is a structure formed in the early embryonic development of mammals. It possesses an inner cell mass (ICM) also known as the ''embryoblast'' which subsequently forms the embryo, and an outer layer of trophoblast cells called the t ...
in mammals. Depending mostly on the concentration of yolk in the egg, the cleavage can be holoblastic (total or entire cleavage) or meroblastic (partial cleavage). The pole of the egg with the highest concentration of yolk is referred to as the vegetal pole while the opposite is referred to as the
animal pole In developmental biology, an embryo is divided into two hemispheres: the animal pole and the vegetal pole within a blastula. The animal pole consists of small cells that divide rapidly, in contrast with the vegetal pole below it. In some cases, the ...
. Cleavage differs from other forms of cell division in that it increases the number of cells and
nuclear Nuclear may refer to: Physics Relating to the nucleus of the atom: *Nuclear engineering *Nuclear physics *Nuclear power *Nuclear reactor *Nuclear weapon *Nuclear medicine *Radiation therapy *Nuclear warfare Mathematics *Nuclear space * Nuclear ...
mass without increasing the cytoplasmic mass. This means that with each successive subdivision, there is roughly half the cytoplasm in each daughter cell than before that division, and thus the ratio of nuclear to cytoplasmic material increases.


Mechanism

The rapid cell cycles are facilitated by maintaining high levels of proteins that control cell cycle progression such as the
cyclin Cyclin is a family of proteins that controls the progression of a cell through the cell cycle by activating cyclin-dependent kinase (CDK) enzymes or group of enzymes required for synthesis of cell cycle. Etymology Cyclins were originally disco ...
s and their associated
cyclin-dependent kinase Cyclin-dependent kinases (CDKs) are the families of protein kinases first discovered for their role in regulating the cell cycle. They are also involved in regulating transcription, mRNA processing, and the differentiation of nerve cells. They a ...
s (CDKs). The complex cyclin B/ CDK1 also known as MPF ( maturation promoting factor) promotes entry into mitosis. The processes of karyokinesis (mitosis) and cytokinesis work together to result in cleavage. The mitotic apparatus is made up of a central spindle and polar asters made up of polymers of tubulin protein called microtubules. The asters are nucleated by centrosomes and the centrosomes are organized by centrioles brought into the egg by the sperm as basal bodies. Cytokinesis is mediated by the contractile ring made up of polymers of actin protein called microfilaments. Karyokinesis and cytokinesis are independent but spatially and temporally coordinated processes. While mitosis can occur in the absence of cytokinesis, cytokinesis requires the mitotic apparatus. The end of cleavage coincides with the beginning of zygotic transcription. This point in non-mammals is referred to as the
midblastula transition In developmental biology, midblastula or midblastula transition (MBT) occurs during the blastula stage of embryonic development in non-mammals. During this stage, the embryo is referred to as a blastula. The series of changes to the blastula that ch ...
and appears to be controlled by the nuclear-cytoplasmic ratio (about 1:6).


Types of cleavage


Determinate

Determinate cleavage (also called mosaic cleavage) is in most protostomes. It results in the developmental fate of the
cells Cell most often refers to: * Cell (biology), the functional basic unit of life Cell may also refer to: Locations * Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery w ...
being set early in the
embryo An embryo is an initial stage of development of a multicellular organism. In organisms that reproduce sexually, embryonic development is the part of the life cycle that begins just after fertilization of the female egg cell by the male spe ...
development. Each blastomere produced by early embryonic cleavage does not have the capacity to develop into a complete
embryo An embryo is an initial stage of development of a multicellular organism. In organisms that reproduce sexually, embryonic development is the part of the life cycle that begins just after fertilization of the female egg cell by the male spe ...
.


Indeterminate

A cell can only be indeterminate (also called regulative) if it has a complete set of undisturbed animal/vegetal cytoarchitectural features. It is characteristic of
deuterostome Deuterostomia (; in Greek) are animals typically characterized by their anus forming before their mouth during embryonic development. The group's sister clade is Protostomia, animals whose digestive tract development is more varied. Some exampl ...
s – when the original cell in a deuterostome embryo divides, the two resulting cells can be separated, and each one can individually develop into a whole organism.


Holoblastic

In holoblastic cleavage, the zygote and blastomeres are completely divided during the cleavage, so the number of blastomeres doubles with each cleavage. In the absence of a large concentration of yolk, four major cleavage types can be observed in
isolecithal Isolecithal (''Greek'' iso = equal, lekithos = yolk) refers to the even distribution of yolk in the cytoplasm of ova of mammals and other vertebrates, notably fishes of the families Petromyzontidae, Amiidae, and Lepisosteidae. Isolecithal cells have ...
cells (cells with a small, even distribution of yolk) or in mesolecithal cells or microlecithal cells (moderate concentration of yolk in a gradient) – bilateral holoblastic, radial holoblastic, rotational holoblastic, and spiral holoblastic, cleavage. These holoblastic cleavage planes pass all the way through isolecithal zygotes during the process of cytokinesis. Coeloblastula is the next stage of development for eggs that undergo these radial cleavaging. In holoblastic eggs, the first cleavage always occurs along the vegetal-animal axis of the egg, the second cleavage is perpendicular to the first. From here, the spatial arrangement of blastomeres can follow various patterns, due to different planes of cleavage, in various organisms.


Bilateral

: The first cleavage results in bisection of the zygote into left and right halves. The following cleavage planes are centered on this axis and result in the two halves being mirror images of one another. In bilateral holoblastic cleavage, the divisions of the blastomeres are complete and separate; compared with bilateral meroblastic cleavage, in which the blastomeres stay partially connected.


Radial

: Radial cleavage is characteristic of the deuterostomes, which include some vertebrates and echinoderms, in which the spindle axes are parallel or at right angles to the polar axis of the oocyte.


Rotational

: Rotational cleavage involves a normal first division along the meridional axis, giving rise to two daughter cells. The way in which this cleavage differs is that one of the daughter cells divides meridionally, whilst the other divides equatorially. :
Mammal Mammals () are a group of vertebrate animals constituting the class Mammalia (), characterized by the presence of mammary glands which in females produce milk for feeding (nursing) their young, a neocortex (a region of the brain), fur or ...
s display rotational cleavage, and an
isolecithal Isolecithal (''Greek'' iso = equal, lekithos = yolk) refers to the even distribution of yolk in the cytoplasm of ova of mammals and other vertebrates, notably fishes of the families Petromyzontidae, Amiidae, and Lepisosteidae. Isolecithal cells have ...
distribution of yolk (sparsely and evenly distributed). Because the cells have only a small concentration of yolk, they require immediate implantation onto the uterine wall in order to receive nutrients. : The
nematode The nematodes ( or grc-gre, Νηματώδη; la, Nematoda) or roundworms constitute the phylum Nematoda (also called Nemathelminthes), with plant-Parasitism, parasitic nematodes also known as eelworms. They are a diverse animal phylum inhab ...
''C. elegans'', a popular developmental
model organism A model organism (often shortened to model) is a non-human species that is extensively studied to understand particular biological phenomena, with the expectation that discoveries made in the model organism will provide insight into the workin ...
, undergoes holoblastic rotational cell cleavage.


Spiral

: Spiral cleavage is conserved between many members of the lophotrochozoan taxa, referred to as
Spiralia The Spiralia are a morphologically diverse clade of protostome animals, including within their number the molluscs, annelids, platyhelminths and other taxa. The term ''Spiralia'' is applied to those phyla that exhibit canonical spiral cleavage, a ...
. Most spiralians undergo equal spiral cleavage, although some undergo unequal cleavage (see below). This group includes
annelid The annelids (Annelida , from Latin ', "little ring"), also known as the segmented worms, are a large phylum, with over 22,000 extant species including ragworms, earthworms, and leeches. The species exist in and have adapted to various ecol ...
s,
mollusc Mollusca is the second-largest phylum of invertebrate animals after the Arthropoda, the members of which are known as molluscs or mollusks (). Around 85,000  extant species of molluscs are recognized. The number of fossil species is esti ...
s, and sipuncula. Spiral cleavage can vary between species, but generally the first two cell divisions result in four macromeres, also called blastomeres, (A, B, C, D) each representing one quadrant of the embryo. These first two cleavages are not oriented in planes that occur at right angles parallel to the animal-vegetal axis of the zygote. At the 4-cell stage, the A and C macromeres meet at the animal pole, creating the animal cross-furrow, while the B and D macromeres meet at the vegetal pole, creating the vegetal cross-furrow. With each successive cleavage cycle, the macromeres give rise to quartets of smaller micromeres at the animal pole. The divisions that produce these quartets occur at an oblique angle, an angle that is not a multiple of 90°, to the animal-vegetal axis. Each quartet of micromeres is rotated relative to their parent macromere, and the chirality of this rotation differs between odd and even numbered quartets, meaning that there is alternating symmetry between the odd and even quartets. In other words, the orientation of divisions that produces each quartet alternates between being clockwise and counterclockwise with respect to the animal pole. The alternating cleavage pattern that occurs as the quartets are generated produces quartets of micromeres that reside in the cleavage furrows of the four macromeres. When viewed from the animal pole, this arrangement of cells displays a spiral pattern. : Specification of the D macromere and is an important aspect of spiralian development. Although the primary axis, animal-vegetal, is determined during
oogenesis Oogenesis, ovogenesis, or oögenesis is the differentiation of the ovum (egg cell) into a cell competent to further develop when fertilized. It is developed from the primary oocyte by maturation. Oogenesis is initiated in the embryonic stage. O ...
, the secondary axis, dorsal-ventral, is determined by the specification of the D quadrant. The D macromere facilitates cell divisions that differ from those produced by the other three macromeres. Cells of the D quadrant give rise to dorsal and posterior structures of the spiralian. Two known mechanisms exist to specify the D quadrant. These mechanisms include equal cleavage and unequal cleavage. : In equal cleavage, the first two cell divisions produce four macromeres that are indistinguishable from one another. Each macromere has the potential of becoming the D macromere. After the formation of the third quartet, one of the macromeres initiates maximum contact with the overlying micromeres in the animal pole of the embryo. This contact is required to distinguish one macromere as the official D quadrant blastomere. In equally cleaving spiral embryos, the D quadrant is not specified until after the formation of the third quartet, when contact with the micromeres dictates one cell to become the future D blastomere. Once specified, the D blastomere signals to surrounding micromeres to lay out their cell fates. : In unequal cleavage, the first two cell divisions are unequal producing four cells in which one cell is bigger than the other three. This larger cell is specified as the D macromere. Unlike equally cleaving spiralians, the D macromere is specified at the four-cell stage during unequal cleavage. Unequal cleavage can occur in two ways. One method involves asymmetric positioning of the cleavage spindle. This occurs when the aster at one pole attaches to the cell membrane, causing it to be much smaller than the aster at the other pole. This results in an unequal cytokinesis, in which both macromeres inherit part of the animal region of the egg, but only the bigger macromere inherits the vegetal region. The second mechanism of unequal cleavage involves the production of an enucleate, membrane bound, cytoplasmic protrusion, called a polar lobe. This polar lobe forms at the vegetal pole during cleavage, and then gets shunted to the D blastomere. The polar lobe contains vegetal cytoplasm, which becomes inherited by the future D macromere.


Meroblastic

In the presence of a large concentration of yolk in the fertilized egg cell, the cell can undergo partial, or meroblastic, cleavage. Two major types of meroblastic cleavage are discoidal and superficial. * Discoidal : In discoidal cleavage, the cleavage furrows do not penetrate the yolk. The embryo forms a disc of cells, called a blastodisc, on top of the yolk. Discoidal cleavage is commonly found in monotremes,
birds Birds are a group of warm-blooded vertebrates constituting the class Aves (), characterised by feathers, toothless beaked jaws, the laying of hard-shelled eggs, a high metabolic rate, a four-chambered heart, and a strong yet lightweigh ...
,
reptiles Reptiles, as most commonly defined are the animals in the Class (biology), class Reptilia ( ), a paraphyletic grouping comprising all sauropsid, sauropsids except birds. Living reptiles comprise turtles, crocodilians, Squamata, squamates (lizar ...
, and fish that have
telolecithal Telolecithal (Greek: ''τέλος'' (telos) = end, ''λέκιθος'' (lekithos) = yolk), refers to the uneven distribution of yolk in the cytoplasm of ova found in birds, reptiles, fish, and monotremes. The yolk is concentrated at one pole of the e ...
egg cells (egg cells with the yolk concentrated at one end). The layer of cells that have incompletely divided and are in contact with the yolk are called the "syncytial layer". * Superficial : In superficial cleavage,
mitosis In cell biology, mitosis () is a part of the cell cycle in which replicated chromosomes are separated into two new nuclei. Cell division by mitosis gives rise to genetically identical cells in which the total number of chromosomes is mainta ...
occurs but not cytokinesis, resulting in a polynuclear cell. With the yolk positioned in the center of the egg cell, the nuclei migrate to the periphery of the egg, and the plasma membrane grows inward, partitioning the nuclei into individual cells. Superficial cleavage occurs in
arthropods Arthropods (, (gen. ποδός)) are invertebrate animals with an exoskeleton, a Segmentation (biology), segmented body, and paired jointed appendages. Arthropods form the phylum Arthropoda. They are distinguished by their jointed limbs and Arth ...
that have
centrolecithal Centrolecithal (''Greek'' kentron = center of a circle, lekithos = yolk) describes the placement of the yolk in the centre of the cytoplasm of ova. Many arthropod eggs are centrolecithal. During cytokinesis, centrolecithal zygotes undergo meroblast ...
egg cells (egg cells with the yolk located in the center of the cell). This type of cleavage can work to promote synchronicity in developmental timing, such as in ''Drosophila''.Gilbert SF. Developmental Biology 11th edition. Sunderland (MA): Sinauer Associates; 2014. Print


Placentals

Differences exist between cleavage in placental mammals and cleavage in other animals. Mammals have a slow rate of division that is between 12 and 24 hours. These cellular divisions are asynchronous. Zygotic transcription starts at the two-, four-, or eight-cell stage. Cleavage is holoblastic and rotational.


Compaction

At the eight-cell stage, having undergone three cleavages the embryo goes through some changes. At this stage the cells begin to tightly adhere in a process known as compaction, and when 16 cells are compacted it is known as a morula. The morula enters the uterus after three or four days, and as it does a cavity called the blastocoel is formed in the morula to produce the
blastocyst The blastocyst is a structure formed in the early embryonic development of mammals. It possesses an inner cell mass (ICM) also known as the ''embryoblast'' which subsequently forms the embryo, and an outer layer of trophoblast cells called the t ...
. The blastocyst contains the
inner cell mass The inner cell mass (ICM) or embryoblast (known as the pluriblast in marsupials) is a structure in the early development of an embryo. It is the mass of cells inside the blastocyst that will eventually give rise to the definitive structures of ...
that will go on to develop into the
embryo An embryo is an initial stage of development of a multicellular organism. In organisms that reproduce sexually, embryonic development is the part of the life cycle that begins just after fertilization of the female egg cell by the male spe ...
proper, and an outer cell layer of trophoblasts. At the 8-cell stage the blastomeres are round, and loosely adhered. With further division the cells become flattened to optimise the contact between them. Most of the cells become polarized,
gap junction Gap junctions are specialized intercellular connections between a multitude of animal cell-types. They directly connect the cytoplasm of two cells, which allows various molecules, ions and electrical impulses to directly pass through a regulate ...
s are formed , and tight junctions are developed with the other blastomeres. This process leads to the development of two different populations of cells: Polar cells on the outside and apolar cells on the inside. The outer cells, called the trophoblast cells, pump sodium in from the outside, which automatically brings water in with it to the basal (inner) surface to form a blastocoel, a cavity in a process called
cavitation Cavitation is a phenomenon in which the static pressure of a liquid reduces to below the liquid's vapour pressure, leading to the formation of small vapor-filled cavities in the liquid. When subjected to higher pressure, these cavities, cal ...
. With further compaction the individual outer blastomeres, the trophoblasts, become indistinguishable. They are still enclosed within the zona pellucida. This compaction serves to make the structure watertight, containing the fluid that the cells will later secrete. The trophoblast cells will eventually give rise to the embryonic contribution to the placenta called the chorion. The inner cells are pushed to one side of the cavity (because the embryo isn't getting any bigger) to form the
inner cell mass The inner cell mass (ICM) or embryoblast (known as the pluriblast in marsupials) is a structure in the early development of an embryo. It is the mass of cells inside the blastocyst that will eventually give rise to the definitive structures of ...
(ICM) and will give rise to the embryo and some extraembryonic membranes. At this stage, the embryo is called a
blastocyst The blastocyst is a structure formed in the early embryonic development of mammals. It possesses an inner cell mass (ICM) also known as the ''embryoblast'' which subsequently forms the embryo, and an outer layer of trophoblast cells called the t ...
. A single cell can be removed from a pre-compaction eight-cell embryo and used for genetic screening, and the embryo will recover.


References


Bibliography

* * *


Further reading

*
What are the 'advantages' of developing a deuterostome pattern of embryonic
on MadSci Network * {{embryology Developmental biology