Diphosphopyridine Nucleotide
   HOME

TheInfoList



OR:

Nicotinamide adenine dinucleotide (NAD) is a
coenzyme A cofactor is a non-protein chemical compound or Metal ions in aqueous solution, metallic ion that is required for an enzyme's role as a catalysis, catalyst (a catalyst is a substance that increases the rate of a chemical reaction). Cofactors can ...
central to
metabolism Metabolism (, from ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run cellular processes; the co ...
. Found in all living
cell Cell most often refers to: * Cell (biology), the functional basic unit of life * Cellphone, a phone connected to a cellular network * Clandestine cell, a penetration-resistant form of a secret or outlawed organization * Electrochemical cell, a de ...
s, NAD is called a dinucleotide because it consists of two
nucleotide Nucleotides are Organic compound, organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both o ...
s joined through their
phosphate Phosphates are the naturally occurring form of the element phosphorus. In chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. It most commonly means orthophosphate, a derivative of orthop ...
groups. One nucleotide contains an
adenine Adenine (, ) (nucleoside#List of nucleosides and corresponding nucleobases, symbol A or Ade) is a purine nucleotide base that is found in DNA, RNA, and Adenosine triphosphate, ATP. Usually a white crystalline subtance. The shape of adenine is ...
nucleobase Nucleotide bases (also nucleobases, nitrogenous bases) are nitrogen-containing biological compounds that form nucleosides, which, in turn, are components of nucleotides, with all of these monomers constituting the basic building blocks of nuc ...
and the other,
nicotinamide Nicotinamide (International nonproprietary name, INN, British Approved Name, BAN ) or niacinamide (United States Adopted Name, USAN ) is a form of vitamin B3, vitamin B3 found in food and used as a dietary supplement and medication. As a suppl ...
. NAD exists in two forms: an oxidized and reduced form, abbreviated as NAD and NADH (H for
hydrogen Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
), respectively. In cellular metabolism, NAD is involved in redox reactions, carrying
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s from one reaction to another, so it is found in two forms: NAD is an
oxidizing agent An oxidizing agent (also known as an oxidant, oxidizer, electron recipient, or electron acceptor) is a substance in a redox chemical reaction that gains or " accepts"/"receives" an electron from a (called the , , or ''electron donor''). In ot ...
, accepting electrons from other molecules and becoming reduced; with H+, this reaction forms NADH, which can be used as a
reducing agent In chemistry, a reducing agent (also known as a reductant, reducer, or electron donor) is a chemical species that "donates" an electron to an (called the , , , or ). Examples of substances that are common reducing agents include hydrogen, carbon ...
to donate electrons. These
electron transfer Electron transfer (ET) occurs when an electron relocates from an atom, ion, or molecule, to another such chemical entity. ET describes the mechanism by which electrons are transferred in redox reactions. Electrochemical processes are ET reactio ...
reactions are the main function of NAD. It is also used in other cellular processes, most notably as a
substrate Substrate may refer to: Physical layers *Substrate (biology), the natural environment in which an organism lives, or the surface or medium on which an organism grows or is attached ** Substrate (aquatic environment), the earthy material that exi ...
of
enzyme An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different mol ...
s in adding or removing
chemical group In organic chemistry, a functional group is any substituent or moiety in a molecule that causes the molecule's characteristic chemical reactions. The same functional group will undergo the same or similar chemical reactions regardless of the re ...
s to or from
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
s, in
posttranslational modification In molecular biology, post-translational modification (PTM) is the covalent process of changing proteins following protein biosynthesis. PTMs may involve enzymes or occur spontaneously. Proteins are created by ribosomes, which translate mRNA ...
s. Because of the importance of these functions, the enzymes involved in NAD metabolism are targets for
drug discovery In the fields of medicine, biotechnology, and pharmacology, drug discovery is the process by which new candidate medications are discovered. Historically, drugs were discovered by identifying the active ingredient from traditional remedies or ...
. In organisms, NAD can be synthesized from simple building-blocks ( ''de novo'') from either
tryptophan Tryptophan (symbol Trp or W) is an α-amino acid that is used in the biosynthesis of proteins. Tryptophan contains an α-amino group, an α-carboxylic acid group, and a side chain indole, making it a polar molecule with a non-polar aromat ...
or
aspartic acid Aspartic acid (symbol Asp or D; the ionic form is known as aspartate), is an α-amino acid that is used in the biosynthesis of proteins. The L-isomer of aspartic acid is one of the 22 proteinogenic amino acids, i.e., the building blocks of protei ...
, each a case of an
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 a ...
. Alternatively, more complex components of the coenzymes are taken up from nutritive compounds such as
nicotinic acid Nicotinic acid, or niacin, is an organic compound and a vitamer of vitamin B3, an essential human nutrient. It is produced by plants and animals from the amino acid tryptophan. Nicotinic acid is also a prescription medication. Amounts f ...
; similar compounds are produced by reactions that break down the structure of NAD, providing a
salvage pathway A salvage pathway is a pathway in which a biological product is produced from intermediates in the degradative pathway of its own or a similar substance. The term often refers to nucleotide salvage in particular, in which nucleotides (purine and py ...
that recycles them back into their respective active form. In the name NAD, the superscripted plus sign indicates the positive
formal charge In chemistry, a formal charge (F.C. or ), in the covalent view of chemical bonding, is the hypothetical charge assigned to an atom in a molecule, assuming that electrons in all chemical bonds are shared equally between atoms, regardless of rela ...
on one of its nitrogen atoms. A biological coenzyme that acts as an electron carrier in enzymatic reactions. Some NAD is converted into the coenzyme
nicotinamide adenine dinucleotide phosphate Nicotinamide adenine dinucleotide phosphate, abbreviated NADP or, in older notation, TPN (triphosphopyridine nucleotide), is a Cofactor (biochemistry), cofactor used in anabolic reactions, such as the Calvin cycle and lipid and nucleic acid synt ...
(NADP), whose chemistry largely parallels that of NAD, though its predominant role is as a coenzyme in
anabolic Anabolism () is the set of metabolic pathways that construct macromolecules like DNA or RNA from smaller units. These reactions require energy, known also as an endergonic process. Anabolism is the building-up aspect of metabolism, whereas catab ...
metabolism. NADP is a reducing agent in anabolic reactions like the Calvin cycle and lipid and nucleic acid syntheses. NADP exists in two forms: NADP+, the oxidized form, and NADPH, the reduced form. NADP is similar to nicotinamide adenine dinucleotide (NAD), but NADP has a phosphate group at the C-2′ position of the adenosyl.


Physical and chemical properties

Nicotinamide adenine dinucleotide consists of two
nucleoside Nucleosides are glycosylamines that can be thought of as nucleotides without a phosphate group. A nucleoside consists simply of a nucleobase (also termed a nitrogenous base) and a five-carbon sugar (ribose or 2'-deoxyribose) whereas a nucleotid ...
s joined by
pyrophosphate In chemistry, pyrophosphates are phosphorus oxyanions that contain two phosphorus atoms in a linkage. A number of pyrophosphate salts exist, such as disodium pyrophosphate () and tetrasodium pyrophosphate (), among others. Often pyrophosphates a ...
. The nucleosides each contain a
ribose Ribose is a simple sugar and carbohydrate with molecular formula C5H10O5 and the linear-form composition H−(C=O)−(CHOH)4−H. The naturally occurring form, , is a component of the ribonucleotides from which RNA is built, and so this comp ...
ring, one with
adenine Adenine (, ) (nucleoside#List of nucleosides and corresponding nucleobases, symbol A or Ade) is a purine nucleotide base that is found in DNA, RNA, and Adenosine triphosphate, ATP. Usually a white crystalline subtance. The shape of adenine is ...
attached to the first carbon atom (the 1' position) (
adenosine diphosphate ribose Adenosine diphosphate ribose (ADPR) is an ester molecule formed into chains by the enzyme poly ADP ribose polymerase. ADPR is created from cyclic ADP-ribose (cADPR) by the CD38 enzyme using nicotinamide adenine dinucleotide (NAD+) as a cofactor. ...
) and the other with
nicotinamide Nicotinamide (International nonproprietary name, INN, British Approved Name, BAN ) or niacinamide (United States Adopted Name, USAN ) is a form of vitamin B3, vitamin B3 found in food and used as a dietary supplement and medication. As a suppl ...
at this position. The compound accepts or donates the equivalent of H. Such reactions (summarized in formula below) involve the removal of two hydrogen atoms from a reactant (R), in the form of a hydride ion (H), and a
proton A proton is a stable subatomic particle, symbol , Hydron (chemistry), H+, or 1H+ with a positive electric charge of +1 ''e'' (elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an e ...
(H). The proton is released into solution, while the reductant RH is oxidized and NAD reduced to NADH by transfer of the hydride to the nicotinamide ring. :RH + NAD → NADH + H + R; From the electron pair of the hydride ion, one electron is attracted to the slightly more electronegative atom of the nicotinamide ring of NAD, becoming part of the nicotinamide moiety. The remaining hydrogen atom is transferred to the carbon atom opposite the N atom. The midpoint potential of the NAD/NADH redox pair is −0.32 
volt The volt (symbol: V) is the unit of electric potential, Voltage#Galvani potential vs. electrochemical potential, electric potential difference (voltage), and electromotive force in the International System of Units, International System of Uni ...
s, which makes NADH a moderately strong ''reducing'' agent. The reaction is easily reversible, when NADH reduces another molecule and is re-oxidized to NAD. This means the coenzyme can continuously cycle between the NAD and NADH forms without being consumed. In appearance, all forms of this coenzyme are white
amorphous In condensed matter physics and materials science, an amorphous solid (or non-crystalline solid) is a solid that lacks the long-range order that is a characteristic of a crystal. The terms "glass" and "glassy solid" are sometimes used synonymousl ...
powders that are
hygroscopic Hygroscopy is the phenomenon of attracting and holding water molecules via either absorption (chemistry), absorption or adsorption from the surrounding Natural environment, environment, which is usually at normal or room temperature. If water mol ...
and highly water-soluble. The solids are stable if stored dry and in the dark. Solutions of NAD are colorless and stable for about a week at 4 
°C The degree Celsius is the unit of temperature on the Celsius temperature scale "Celsius temperature scale, also called centigrade temperature scale, scale based on 0 ° for the melting point of water and 100 ° for the boiling point ...
and neutral pH, but decompose rapidly in acidic or alkaline solutions. Upon decomposition, they form products that are
enzyme inhibitor An enzyme inhibitor is a molecule that binds to an enzyme and blocks its Enzyme activity, activity. Enzymes are proteins that speed up chemical reactions necessary for life, in which Substrate (biochemistry), substrate molecules are converted ...
s. Both NAD and NADH strongly absorb
ultraviolet Ultraviolet radiation, also known as simply UV, is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight and constitutes about 10% of ...
light because of the adenine. For example, peak absorption of NAD is at a
wavelength In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats. In other words, it is the distance between consecutive corresponding points of the same ''phase (waves ...
of 259 
nanometer 330px, Different lengths as in respect to the Molecule">molecular scale. The nanometre (international spelling as used by the International Bureau of Weights and Measures; SI symbol: nm), or nanometer (American spelling Despite the va ...
s (nm), with an extinction coefficient of 16,900  M−1 cm−1. NADH also absorbs at higher wavelengths, with a second peak in UV absorption at 339 nm with an extinction coefficient of 6,220 M−1cm−1. This difference in the ultraviolet
absorption spectra Absorption may refer to: Chemistry and biology * Absorption (biology), digestion ** Absorption (small intestine) * Absorption (chemistry), diffusion of particles of gas or liquid into liquid or solid materials * Absorption (skin), a route by whic ...
between the oxidized and reduced forms of the coenzymes at higher wavelengths makes it simple to measure the conversion of one to another in
enzyme assay Enzyme assays are laboratory methods for measuring enzymatic activity. They are vital for the study of enzyme kinetics and enzyme inhibition. Enzyme units The quantity or concentration of an enzyme can be expressed in molar amounts, as with a ...
s – by measuring the amount of UV absorption at 340 nm using a spectrophotometer. NAD and NADH also differ in their
fluorescence Fluorescence is one of two kinds of photoluminescence, the emission of light by a substance that has absorbed light or other electromagnetic radiation. When exposed to ultraviolet radiation, many substances will glow (fluoresce) with colore ...
. Freely diffusing NADH in aqueous solution, when excited at the nicotinamide absorbance of ~335 nm (near-UV), fluoresces at 445–460 nm (violet to blue) with a fluorescence lifetime of 0.4 
nanosecond A nanosecond (ns) is a unit of time in the International System of Units (SI) equal to one billionth of a second, that is, of a second, or seconds. The term combines the SI prefix ''nano-'' indicating a 1 billionth submultiple of an SI unit (e ...
s, while NAD does not fluoresce. The properties of the fluorescence signal changes when NADH binds to
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
s, so these changes can be used to measure
dissociation constant In chemistry, biochemistry, and pharmacology, a dissociation constant (''K''D) is a specific type of equilibrium constant that measures the propensity of a larger object to separate (dissociate) reversibly into smaller components, as when a complex ...
s, which are useful in the study of
enzyme kinetics Enzyme kinetics is the study of the rates of enzyme catalysis, enzyme-catalysed chemical reactions. In enzyme kinetics, the reaction rate is measured and the effects of varying the conditions of the reaction are investigated. Studying an enzyme' ...
. These changes in fluorescence are also used to measure changes in the redox state of living cells, through
fluorescence microscopy A fluorescence microscope is an optical microscope that uses fluorescence instead of, or in addition to, scattering, reflection, and attenuation or absorption, to study the properties of organic or inorganic substances. A fluorescence micro ...
. NADH can be converted to NAD+ in a reaction catalysed by copper, which requires hydrogen peroxide. Thus, the supply of NAD+ in cells requires mitochondrial copper(II).


Concentration and state in cells

In rat liver, the total amount of NAD and NADH is approximately 1  μmole per
gram The gram (originally gramme; SI unit symbol g) is a Physical unit, unit of mass in the International System of Units (SI) equal to one thousandth of a kilogram. Originally defined in 1795 as "the absolute Mass versus weight, weight of a volume ...
of wet weight, about 10 times the concentration of NADP and NADPH in the same cells. The actual concentration of NAD in cell
cytosol The cytosol, also known as cytoplasmic matrix or groundplasm, is one of the liquids found inside cells ( intracellular fluid (ICF)). It is separated into compartments by membranes. For example, the mitochondrial matrix separates the mitochondri ...
is harder to measure, with recent estimates in animal cells ranging around 0.3  mM, and approximately 1.0 to 2.0 mM in
yeast Yeasts are eukaryotic, single-celled microorganisms classified as members of the fungus kingdom (biology), kingdom. The first yeast originated hundreds of millions of years ago, and at least 1,500 species are currently recognized. They are est ...
. However, more than 80% of NADH fluorescence in mitochondria is from bound form, so the concentration in solution is much lower. NAD concentrations are highest in the mitochondria, constituting 40% to 70% of the total cellular NAD. NAD in the cytosol is carried into the mitochondrion by a specific
membrane transport protein A membrane transport protein is a membrane protein involved in the movement of ions, small molecules, and macromolecules, such as another protein, across a biological membrane. Transport proteins are integral membrane proteins, integral transmembr ...
, since the coenzyme cannot
diffuse Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical p ...
across membranes. The intracellular
half-life Half-life is a mathematical and scientific description of exponential or gradual decay. Half-life, half life or halflife may also refer to: Film * Half-Life (film), ''Half-Life'' (film), a 2008 independent film by Jennifer Phang * ''Half Life: ...
of NAD+ was claimed to be between 1–2 hours by one review, whereas another review gave varying estimates based on compartment: intracellular 1–4 hours, cytoplasmic 2 hours, and mitochondrial 4–6 hours. The balance between the oxidized and reduced forms of nicotinamide adenine dinucleotide is called the NAD/NADH ratio. This ratio is an important component of what is called the ''redox state'' of a cell, a measurement that reflects both the metabolic activities and the health of cells. The effects of the NAD/NADH ratio are complex, controlling the activity of several key enzymes, including
glyceraldehyde 3-phosphate dehydrogenase Glyceraldehyde 3-phosphate dehydrogenase (abbreviated GAPDH) () is an enzyme of about 37kDa that catalyzes the sixth step of glycolysis and thus serves to break down glucose for energy and carbon molecules. In addition to this long establis ...
and
pyruvate dehydrogenase Pyruvate dehydrogenase is an enzyme that catalyzes the reaction of pyruvate and a lipoamide to give the acetylated dihydrolipoamide and carbon dioxide. The conversion requires the coenzyme thiamine pyrophosphate. Pyruvate dehydrogenase is ...
. In healthy mammalian tissues, estimates of the ratio of free NAD to NADH in the cytoplasm typically lie around 700:1; the ratio is thus favorable for oxidative reactions. The ratio of total NAD/NADH is much lower, with estimates ranging from 3–10 in mammals. In contrast, the NADP/NADPH ratio is normally about 0.005, so NADPH is the dominant form of this coenzyme. These different ratios are key to the different metabolic roles of NADH and NADPH.


Biosynthesis

NAD is synthesized through two metabolic pathways. It is produced either in a ''de novo'' pathway from amino acids or in salvage pathways by recycling preformed components such as
nicotinamide Nicotinamide (International nonproprietary name, INN, British Approved Name, BAN ) or niacinamide (United States Adopted Name, USAN ) is a form of vitamin B3, vitamin B3 found in food and used as a dietary supplement and medication. As a suppl ...
back to NAD. Although most tissues synthesize NAD by the salvage pathway in mammals, much more ''de novo'' synthesis occurs in the liver from tryptophan, and in the kidney and
macrophage Macrophages (; abbreviated MPhi, φ, MΦ or MP) are a type of white blood cell of the innate immune system that engulf and digest pathogens, such as cancer cells, microbes, cellular debris and foreign substances, which do not have proteins that ...
s from
nicotinic acid Nicotinic acid, or niacin, is an organic compound and a vitamer of vitamin B3, an essential human nutrient. It is produced by plants and animals from the amino acid tryptophan. Nicotinic acid is also a prescription medication. Amounts f ...
.


''De novo'' production

Most organisms synthesize NAD from simple components. The specific set of reactions differs among organisms, but a common feature is the generation of quinolinic acid (QA) from an amino acideither
tryptophan Tryptophan (symbol Trp or W) is an α-amino acid that is used in the biosynthesis of proteins. Tryptophan contains an α-amino group, an α-carboxylic acid group, and a side chain indole, making it a polar molecule with a non-polar aromat ...
(Trp) in animals and some bacteria, or
aspartic acid Aspartic acid (symbol Asp or D; the ionic form is known as aspartate), is an α-amino acid that is used in the biosynthesis of proteins. The L-isomer of aspartic acid is one of the 22 proteinogenic amino acids, i.e., the building blocks of protei ...
(Asp) in some bacteria and plants. The quinolinic acid is converted to nicotinic acid mononucleotide (NaMN) by transfer of a phosphoribose moiety. An adenylate moiety is then transferred to form nicotinic acid adenine dinucleotide (NaAD). Finally, the nicotinic acid moiety in NaAD is amidated to a nicotinamide (Nam) moiety, forming nicotinamide adenine dinucleotide. In a further step, some NAD is converted into NADP by NAD kinase, which
phosphorylates In biochemistry, phosphorylation is described as the "transfer of a phosphate group" from a donor to an acceptor. A common phosphorylating agent (phosphate donor) is ATP and a common family of acceptor are alcohols: : This equation can be writt ...
NAD. In most organisms, this enzyme uses
adenosine triphosphate Adenosine triphosphate (ATP) is a nucleoside triphosphate that provides energy to drive and support many processes in living cell (biology), cells, such as muscle contraction, nerve impulse propagation, and chemical synthesis. Found in all known ...
(ATP) as the source of the phosphate group, although several bacteria such as ''
Mycobacterium tuberculosis ''Mycobacterium tuberculosis'' (M. tb), also known as Koch's bacillus, is a species of pathogenic bacteria in the family Mycobacteriaceae and the causative agent of tuberculosis. First discovered in 1882 by Robert Koch, ''M. tuberculosis'' ha ...
'' and a hyperthermophilic
archaeon Archaea ( ) is a domain of organisms. Traditionally, Archaea only included its prokaryotic members, but this has since been found to be paraphyletic, as eukaryotes are known to have evolved from archaea. Even though the domain Archaea cladis ...
'' Pyrococcus horikoshii'', use inorganic
polyphosphate A polyphosphate is a Salt (chemistry), salt or ester of polymeric oxyanions formed from tetrahedral PO4 (phosphate) structural units linked together by sharing oxygen atoms. Polyphosphates can adopt linear or a cyclic (also called, ring) structure ...
as an alternative phosphoryl donor.


Salvage pathways

Despite the presence of the ''de novo'' pathway, the salvage reactions are essential in humans; a lack of
vitamin B3 Vitamin B3, colloquially referred to as niacin, is a vitamin family that includes three forms, or vitamers: nicotinic acid (niacin), nicotinamide (niacinamide), and nicotinamide riboside. All three forms of vitamin B3 are converted within th ...
in the diet causes the
vitamin deficiency Vitamin deficiency is the condition of a long-term lack of a vitamin. When caused by not enough vitamin intake it is classified as a ''primary deficiency'', whereas when due to an underlying disorder such as malabsorption it is called a ''second ...
disease
pellagra Pellagra is a disease caused by a lack of the vitamin niacin (vitamin B3). Symptoms include inflamed skin, diarrhea, dementia, and sores in the mouth. Areas of the skin exposed to friction and radiation are typically affected first. Over tim ...
. This high requirement for NAD results from the constant consumption of the coenzyme in reactions such as posttranslational modifications, since the cycling of NAD between oxidized and reduced forms in redox reactions does not change the overall levels of the coenzyme. The major source of NAD in mammals is the salvage pathway which recycles the
nicotinamide Nicotinamide (International nonproprietary name, INN, British Approved Name, BAN ) or niacinamide (United States Adopted Name, USAN ) is a form of vitamin B3, vitamin B3 found in food and used as a dietary supplement and medication. As a suppl ...
produced by enzymes utilizing NAD. The first step, and the rate-limiting enzyme in the salvage pathway is
nicotinamide phosphoribosyltransferase Nicotinamide phosphoribosyltransferase (NAmPRTase or NAMPT), formerly known as pre-B-cell colony-enhancing factor 1 (PBEF1) or visfatin for its extracellular form (eNAMPT), is an enzyme that in humans is encoded by the ''NAMPT'' gene. The intra ...
(NAMPT), which produces
nicotinamide mononucleotide Nicotinamide mononucleotide ("NMN" and "β-NMN") is a nucleotide derived from ribose, nicotinamide, nicotinamide riboside and niacin. In humans, several enzymes use NMN to generate nicotinamide adenine dinucleotide (NADH). In mice, it has been ...
(NMN). NMN is the immediate precursor to NAD+ in the salvage pathway. Besides assembling NAD ''de novo'' from simple amino acid precursors, cells also salvage preformed compounds containing a pyridine base. The three vitamin precursors used in these salvage metabolic pathways are
nicotinic acid Nicotinic acid, or niacin, is an organic compound and a vitamer of vitamin B3, an essential human nutrient. It is produced by plants and animals from the amino acid tryptophan. Nicotinic acid is also a prescription medication. Amounts f ...
(NA),
nicotinamide Nicotinamide (International nonproprietary name, INN, British Approved Name, BAN ) or niacinamide (United States Adopted Name, USAN ) is a form of vitamin B3, vitamin B3 found in food and used as a dietary supplement and medication. As a suppl ...
(Nam) and
nicotinamide riboside Nicotinamide riboside (NR, SR647) is a pyridine-nucleoside and a form of vitamin B3. It functions as a precursor to nicotinamide adenine dinucleotide, or NAD+, through a two-step and a three-step pathway. Chemistry While the molecular weight of ...
(NR). These compounds can be taken up from the diet and are termed vitamin B or ''niacin''. However, these compounds are also produced within cells and by digestion of cellular NAD. Some of the enzymes involved in these salvage pathways appear to be concentrated in the
cell nucleus The cell nucleus (; : nuclei) is a membrane-bound organelle found in eukaryote, eukaryotic cell (biology), cells. Eukaryotic cells usually have a single nucleus, but a few cell types, such as mammalian red blood cells, have #Anucleated_cells, ...
, which may compensate for the high level of reactions that consume NAD in this
organelle In cell biology, an organelle is a specialized subunit, usually within a cell (biology), cell, that has a specific function. The name ''organelle'' comes from the idea that these structures are parts of cells, as Organ (anatomy), organs are to th ...
. There are some reports that mammalian cells can take up extracellular NAD from their surroundings, and both nicotinamide and nicotinamide riboside can be absorbed from the gut. The salvage pathways used in
microorganism A microorganism, or microbe, is an organism of microscopic scale, microscopic size, which may exist in its unicellular organism, single-celled form or as a Colony (biology)#Microbial colonies, colony of cells. The possible existence of unseen ...
s differ from those of
mammal A mammal () is a vertebrate animal of the Class (biology), class Mammalia (). Mammals are characterised by the presence of milk-producing mammary glands for feeding their young, a broad neocortex region of the brain, fur or hair, and three ...
s. Some pathogens, such as the yeast '' Candida glabrata'' and the bacterium ''
Haemophilus influenzae ''Haemophilus influenzae'' (formerly called Pfeiffer's bacillus or ''Bacillus influenzae'') is a Gram-negative, Motility, non-motile, Coccobacillus, coccobacillary, facultative anaerobic organism, facultatively anaerobic, Capnophile, capnophili ...
'' are NAD
auxotroph Auxotrophy ( "to increase"; ''τροφή'' "nourishment") is the inability of an organism to synthesize a particular organic compound required for its growth (as defined by IUPAC). An auxotroph is an organism that displays this characteristic; ''a ...
s – they cannot synthesize NAD – but possess salvage pathways and thus are dependent on external sources of NAD or its precursors. Even more surprising is the intracellular
pathogen In biology, a pathogen (, "suffering", "passion" and , "producer of"), in the oldest and broadest sense, is any organism or agent that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a Germ theory of d ...
''
Chlamydia trachomatis ''Chlamydia trachomatis'' () is a Gram-negative, Anaerobic organism, anaerobic bacterium responsible for Chlamydia infection, chlamydia and trachoma. ''C. trachomatis'' exists in two forms, an extracellular infectious elementary body (EB) and an ...
'', which lacks recognizable candidates for any genes involved in the biosynthesis or salvage of both NAD and NADP, and must acquire these coenzymes from its
host A host is a person responsible for guests at an event or for providing hospitality during it. Host may also refer to: Places * Host, Pennsylvania, a village in Berks County * Host Island, in the Wilhelm Archipelago, Antarctica People * ...
.


Functions

Nicotinamide adenine dinucleotide has several essential roles in
metabolism Metabolism (, from ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run cellular processes; the co ...
. It acts as a
coenzyme A cofactor is a non-protein chemical compound or Metal ions in aqueous solution, metallic ion that is required for an enzyme's role as a catalysis, catalyst (a catalyst is a substance that increases the rate of a chemical reaction). Cofactors can ...
in
redox Redox ( , , reduction–oxidation or oxidation–reduction) is a type of chemical reaction in which the oxidation states of the reactants change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is t ...
reactions, as a donor of ADP-ribose moieties in
ADP-ribosylation ADP-ribosylation is the addition of one or more ADP-ribose moieties to a protein. It is a reversible post-translational modification that is involved in many cellular processes, including cell signaling, DNA repair, gene regulation and apoptosis ...
reactions, as a precursor of the
second messenger Second messengers are intracellular signaling molecules released by the cell in response to exposure to extracellular signaling molecules—the first messengers. (Intercellular signals, a non-local form of cell signaling, encompassing both first m ...
molecule
cyclic ADP-ribose Cyclic ADP-ribose, frequently abbreviated as cADPR, is a cyclic adenine nucleotide (like cAMP) with two phosphate groups present on 5' OH of the adenosine (like ADP), further connected to another ribose at the 5' position, which, in turn, closes ...
, as well as acting as a substrate for bacterial
DNA ligase DNA ligase is a type of enzyme that facilitates the joining of DNA strands together by catalyzing the formation of a phosphodiester bond. It plays a role in repairing single-strand breaks in duplex DNA in living organisms, but some forms (such ...
s and a group of enzymes called
sirtuin Sirtuins are a family of signaling proteins involved in metabolic regulation. They are ancient in animal evolution and appear to possess a highly conserved structure throughout all kingdoms of life. Chemically, sirtuins are a class of proteins ...
s that use NAD to remove
acetyl In organic chemistry, an acetyl group is a functional group denoted by the chemical formula and the structure . It is sometimes represented by the symbol Ac (not to be confused with the element actinium). In IUPAC nomenclature, an acetyl grou ...
groups from proteins. In addition to these metabolic functions, NAD+ emerges as an adenine nucleotide that can be released from cells spontaneously and by regulated mechanisms, and can therefore have important
extracellular This glossary of biology terms is a list of definitions of fundamental terms and concepts used in biology, the study of life and of living organisms. It is intended as introductory material for novices; for more specific and technical definitions ...
roles.


Oxidoreductase binding of NAD

The main role of NAD in metabolism is the transfer of electrons from one molecule to another. Reactions of this type are catalyzed by a large group of enzymes called
oxidoreductase In biochemistry, an oxidoreductase is an enzyme that catalyzes the transfer of electrons from one molecule, the reductant, also called the electron donor, to another, the oxidant, also called the electron acceptor. This group of enzymes usually ut ...
s. The correct names for these enzymes contain the names of both their substrates: for example NADH-ubiquinone oxidoreductase catalyzes the oxidation of NADH by
coenzyme Q Coenzyme Q10 (CoQ10 ), also known as ubiquinone, is a naturally occurring biochemical cofactor (coenzyme) and an antioxidant produced by the human body. It can also be obtained from dietary sources, such as meat, fish, seed oils, vegetables, ...
. However, these enzymes are also referred to as ''dehydrogenases'' or ''reductases'', with NADH-ubiquinone oxidoreductase commonly being called ''NADH dehydrogenase'' or sometimes ''coenzyme Q reductase''. There are many different superfamilies of enzymes that bind NAD / NADH. One of the most common superfamilies includes a
structural motif In a chain-like biological molecule, such as a protein or nucleic acid, a structural motif is a common three-dimensional structure that appears in a variety of different, evolutionarily unrelated molecules. A structural motif does not have t ...
known as the
Rossmann fold The Rossmann fold is a tertiary fold found in proteins that bind nucleotides, such as enzyme cofactors FAD, NAD+, and NADP+. This fold is composed of alternating beta strands and alpha helical segments where the beta strands are hydrogen bond ...
. The motif is named after
Michael Rossmann Michael G. Rossmann (30 July 1930 – 14 May 2019) was a German-American physicist, microbiologist, and Hanley Distinguished Professor of Biological Sciences at Purdue University who led a team of researchers to be the first to map the structur ...
, who was the first scientist to notice how common this structure is within nucleotide-binding proteins. An example of a NAD-binding bacterial enzyme involved in
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 a ...
metabolism that does not have the Rossmann fold is found in ''
Pseudomonas syringae ''Pseudomonas syringae'' is a rod-shaped, Gram-negative bacterium with polar flagella. As a plant pathology, plant pathogen, it can infect a wide range of species, and exists as over 50 different pathovars, all of which are available to research ...
'' pv. tomato (; ). When bound in the active site of an oxidoreductase, the nicotinamide ring of the coenzyme is positioned so that it can accept a hydride from the other substrate. Depending on the enzyme, the hydride donor is positioned either "above" or "below" the plane of the planar C4 carbon, as defined in the figure. Class A oxidoreductases transfer the atom from above; class B enzymes transfer it from below. Since the C4 carbon that accepts the hydrogen is
prochiral In stereochemistry, prochiral molecules are those that can be converted from achiral to chiral in a single step, such as changing one atom. An achiral species which can be converted to a chiral in two steps is called proprochiral. A molecule ha ...
, this can be exploited in
enzyme kinetics Enzyme kinetics is the study of the rates of enzyme catalysis, enzyme-catalysed chemical reactions. In enzyme kinetics, the reaction rate is measured and the effects of varying the conditions of the reaction are investigated. Studying an enzyme' ...
to give information about the enzyme's mechanism. This is done by mixing an enzyme with a substrate that has
deuterium Deuterium (hydrogen-2, symbol H or D, also known as heavy hydrogen) is one of two stable isotopes of hydrogen; the other is protium, or hydrogen-1, H. The deuterium nucleus (deuteron) contains one proton and one neutron, whereas the far more c ...
atoms substituted for the hydrogens, so the enzyme will reduce NAD by transferring deuterium rather than hydrogen. In this case, an enzyme can produce one of two
stereoisomer In stereochemistry, stereoisomerism, or spatial isomerism, is a form of isomerism in which molecules have the same molecular formula and sequence of bonded atoms (constitution), but differ in the three-dimensional orientations of their atoms in ...
s of NADH. Despite the similarity in how proteins bind the two coenzymes, enzymes almost always show a high level of specificity for either NAD or NADP. This specificity reflects the distinct metabolic roles of the respective coenzymes, and is the result of distinct sets of
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 a ...
residues in the two types of coenzyme-binding pocket. For instance, in the active site of NADP-dependent enzymes, an
ionic bond Ionic bonding is a type of chemical bond A chemical bond is the association of atoms or ions to form molecules, crystals, and other structures. The bond may result from the electrostatic force between oppositely charged ions as in ionic ...
is formed between a basic amino acid side-chain and the acidic phosphate group of NADP. On the converse, in NAD-dependent enzymes the charge in this pocket is reversed, preventing NADP from binding. However, there are a few exceptions to this general rule, and enzymes such as
aldose reductase In enzymology, aldose reductase (or aldehyde reductase) () is an enzyme in humans encoded by the gene AKR1B1. It is an cytosolic NADPH-dependent oxidoreductase that catalyzes the reduction of a variety of aldehydes and carbonyls, including monos ...
,
glucose-6-phosphate dehydrogenase Glucose-6-phosphate dehydrogenase (G6PD or G6PDH) () is a cytosolic enzyme that catalysis, catalyzes the chemical reaction : Glucose 6-phosphate, D-glucose 6-phosphate + NADP+ + 6-Phosphogluconolactone, 6-phospho-D-glucono-1,5-lactone + NADPH ...
, and
methylenetetrahydrofolate reductase Methylenetetrahydrofolate reductase (MTHFR) is the rate-limiting enzyme in the methyl cycle, and it is encoded by the ''MTHFR'' gene. Methylenetetrahydrofolate reductase catalyzes the conversion of 5,10-Methylenetetrahydrofolate, 5,10-methylenet ...
can use both coenzymes in some species.


Role in redox metabolism

The redox reactions catalyzed by oxidoreductases are vital in all parts of metabolism, but one particularly important area where these reactions occur is in the release of energy from nutrients. Here, reduced compounds such as
glucose Glucose is a sugar with the Chemical formula#Molecular formula, molecular formula , which is often abbreviated as Glc. It is overall the most abundant monosaccharide, a subcategory of carbohydrates. It is mainly made by plants and most algae d ...
and
fatty acid In chemistry, in particular in biochemistry, a fatty acid is a carboxylic acid with an aliphatic chain, which is either saturated and unsaturated compounds#Organic chemistry, saturated or unsaturated. Most naturally occurring fatty acids have an ...
s are oxidized, thereby releasing energy. This energy is transferred to NAD by reduction to NADH, as part of
beta oxidation In biochemistry and metabolism, beta oxidation (also β-oxidation) is the catabolic process by which fatty acid molecules are broken down in the cytosol in prokaryotes and in the mitochondria in eukaryotes to generate acetyl-CoA. Acetyl-CoA enter ...
,
glycolysis Glycolysis is the metabolic pathway that converts glucose () into pyruvic acid, pyruvate and, in most organisms, occurs in the liquid part of cells (the cytosol). The Thermodynamic free energy, free energy released in this process is used to form ...
, and the
citric acid cycle The citric acid cycle—also known as the Krebs cycle, Szent–Györgyi–Krebs cycle, or TCA cycle (tricarboxylic acid cycle)—is a series of chemical reaction, biochemical reactions that release the energy stored in nutrients through acetyl-Co ...
. In
eukaryote The eukaryotes ( ) constitute the Domain (biology), domain of Eukaryota or Eukarya, organisms whose Cell (biology), cells have a membrane-bound cell nucleus, nucleus. All animals, plants, Fungus, fungi, seaweeds, and many unicellular organisms ...
s the electrons carried by the NADH that is produced in the
cytoplasm The cytoplasm describes all the material within a eukaryotic or prokaryotic cell, enclosed by the cell membrane, including the organelles and excluding the nucleus in eukaryotic cells. The material inside the nucleus of a eukaryotic cell a ...
are transferred into the
mitochondrion A mitochondrion () is an organelle found in the cell (biology), cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double lipid bilayer, membrane structure and use aerobic respiration to generate adenosine tri ...
(to reduce mitochondrial NAD) by
mitochondrial shuttle The mitochondrial shuttles are biochemical transport systems used to transport reducing agents across the inner mitochondrial membrane. NADH as well as NAD+ cannot cross the membrane, but it can reduce another molecule like FAD and H2that can cros ...
s, such as the malate-aspartate shuttle. The mitochondrial NADH is then oxidized in turn by the
electron transport chain An electron transport chain (ETC) is a series of protein complexes and other molecules which transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples th ...
, which pumps protons across a membrane and generates ATP through
oxidative phosphorylation Oxidative phosphorylation(UK , US : or electron transport-linked phosphorylation or terminal oxidation, is the metabolic pathway in which Cell (biology), cells use enzymes to Redox, oxidize nutrients, thereby releasing chemical energy in order ...
. These shuttle systems also have the same transport function in
chloroplast A chloroplast () is a type of membrane-bound organelle, organelle known as a plastid that conducts photosynthesis mostly in plant cell, plant and algae, algal cells. Chloroplasts have a high concentration of chlorophyll pigments which captur ...
s. Since both the oxidized and reduced forms of nicotinamide adenine dinucleotide are used in these linked sets of reactions, the cell maintains significant concentrations of both NAD and NADH, with the high NAD/NADH ratio allowing this coenzyme to act as both an oxidizing and a reducing agent. In contrast, the main function of NADPH is as a reducing agent in
anabolism Anabolism () is the set of metabolic pathways that construct macromolecules like DNA or RNA from smaller units. These reactions require energy, known also as an Endergonic reaction, endergonic process. Anabolism is the building-up aspect of metabo ...
, with this coenzyme being involved in pathways such as
fatty acid synthesis In biochemistry, fatty acid synthesis is the creation of fatty acids from acetyl-CoA and NADPH through the action of enzymes. Two ''De novo synthesis, de novo'' fatty acid syntheses can be distinguished: cytosolic fatty acid synthesis (FAS/FASI) ...
and
photosynthesis Photosynthesis ( ) is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabo ...
. Since NADPH is needed to drive redox reactions as a strong reducing agent, the NADP/NADPH ratio is kept very low. Although it is important in catabolism, NADH is also used in anabolic reactions, such as
gluconeogenesis Gluconeogenesis (GNG) is a metabolic pathway that results in the biosynthesis of glucose from certain non-carbohydrate carbon substrates. It is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms. In verte ...
. This need for NADH in anabolism poses a problem for prokaryotes growing on nutrients that release only a small amount of energy. For example, nitrifying bacteria such as ''
Nitrobacter ''Nitrobacter'' is a genus comprising rod-shaped, gram-negative, and chemoautotrophic bacteria. The name ''Nitrobacter'' derives from the Latin neuter gender noun ''nitrum, nitri'', alkalis; the Ancient Greek noun βακτηρία, βακτηρ ...
'' oxidize nitrite to nitrate, which releases sufficient energy to pump protons and generate ATP, but not enough to produce NADH directly. As NADH is still needed for anabolic reactions, these bacteria use a
nitrite oxidoreductase Nitrite oxidoreductase (NOR or NXR) is an enzyme involved in nitrification. It is the last step in the process of aerobic ammonia oxidation, which is carried out by two groups of nitrifying bacteria: ammonia oxidizers such as '' Nitrosospira'', '' ...
to produce enough
proton-motive force Chemiosmosis is the movement of ions across a semipermeable membrane bound structure, down their electrochemical gradient. An important example is the formation of adenosine triphosphate (ATP) by the movement of hydrogen ions (H+) across a membra ...
to run part of the electron transport chain in reverse, generating NADH.


Non-redox roles

The coenzyme NAD is also consumed in ADP-ribose transfer reactions. For example, enzymes called ADP-ribosyltransferases add the ADP-ribose moiety of this molecule to proteins, in a
posttranslational modification In molecular biology, post-translational modification (PTM) is the covalent process of changing proteins following protein biosynthesis. PTMs may involve enzymes or occur spontaneously. Proteins are created by ribosomes, which translate mRNA ...
called
ADP-ribosylation ADP-ribosylation is the addition of one or more ADP-ribose moieties to a protein. It is a reversible post-translational modification that is involved in many cellular processes, including cell signaling, DNA repair, gene regulation and apoptosis ...
. ADP-ribosylation involves either the addition of a single ADP-ribose moiety, in ''mono-ADP-ribosylation'', or the transferral of ADP-ribose to proteins in long branched chains, which is called ''poly(ADP-ribosyl)ation''. Mono-ADP-ribosylation was first identified as the mechanism of a group of bacterial
toxin A toxin is a naturally occurring poison produced by metabolic activities of living cells or organisms. They occur especially as proteins, often conjugated. The term was first used by organic chemist Ludwig Brieger (1849–1919), derived ...
s, notably
cholera toxin Cholera toxin (also known as choleragen, CTX, CTx and CT) is a potent enterotoxin produced by the bacterium Vibrio cholerae which causes severe watery diarrhea and dehydration that define cholera infections. The toxin is a member of the heat-l ...
, but it is also involved in normal
cell signaling In biology, cell signaling (cell signalling in British English) is the Biological process, process by which a Cell (biology), cell interacts with itself, other cells, and the environment. Cell signaling is a fundamental property of all Cell (biol ...
. Poly(ADP-ribosyl)ation is carried out by the poly(ADP-ribose) polymerases. The poly(ADP-ribose) structure is involved in the regulation of several cellular events and is most important in the
cell nucleus The cell nucleus (; : nuclei) is a membrane-bound organelle found in eukaryote, eukaryotic cell (biology), cells. Eukaryotic cells usually have a single nucleus, but a few cell types, such as mammalian red blood cells, have #Anucleated_cells, ...
, in processes such as
DNA repair DNA repair is a collection of processes by which a cell (biology), cell identifies and corrects damage to the DNA molecules that encode its genome. A weakened capacity for DNA repair is a risk factor for the development of cancer. DNA is cons ...
and
telomere A telomere (; ) is a region of repetitive nucleotide sequences associated with specialized proteins at the ends of linear chromosomes (see #Sequences, Sequences). Telomeres are a widespread genetic feature most commonly found in eukaryotes. In ...
maintenance. In addition to these functions within the cell, a group of
extracellular This glossary of biology terms is a list of definitions of fundamental terms and concepts used in biology, the study of life and of living organisms. It is intended as introductory material for novices; for more specific and technical definitions ...
ADP-ribosyltransferases has recently been discovered, but their functions remain obscure. NAD may also be added onto cellular
RNA Ribonucleic acid (RNA) is a polymeric molecule that is essential for most biological functions, either by performing the function itself (non-coding RNA) or by forming a template for the production of proteins (messenger RNA). RNA and deoxyrib ...
as a 5'-terminal modification. Another function of this coenzyme in cell signaling is as a precursor of
cyclic ADP-ribose Cyclic ADP-ribose, frequently abbreviated as cADPR, is a cyclic adenine nucleotide (like cAMP) with two phosphate groups present on 5' OH of the adenosine (like ADP), further connected to another ribose at the 5' position, which, in turn, closes ...
, which is produced from NAD by ADP-ribosyl cyclases, as part of a
second messenger system Second messengers are intracellular signaling molecules released by the cell in response to exposure to extracellular signaling molecules—the first messengers. (Intercellular signals, a non-local form of cell signaling, encompassing both first me ...
. This molecule acts in
calcium signaling Calcium signaling is the use of calcium ions (Ca2+) to communicate and drive intracellular processes often as a step in signal transduction. Ca2+ is important for a wide variety of cellular signaling pathways. Once Ca2+ enters the cytosol of the ...
by releasing calcium from intracellular stores. It does this by binding to and opening a class of calcium channels called
ryanodine receptor Ryanodine receptors (RyR) make up a class of high-conductance, intracellular calcium channels present in various forms, such as animal muscles and neurons. There are three major isoforms of the ryanodine receptor, which are found in different tissu ...
s, which are located in the membranes of
organelle In cell biology, an organelle is a specialized subunit, usually within a cell (biology), cell, that has a specific function. The name ''organelle'' comes from the idea that these structures are parts of cells, as Organ (anatomy), organs are to th ...
s, such as the
endoplasmic reticulum The endoplasmic reticulum (ER) is a part of a transportation system of the eukaryote, eukaryotic cell, and has many other important functions such as protein folding. The word endoplasmic means "within the cytoplasm", and reticulum is Latin for ...
, and inducing the activation of the
transcription factor In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription (genetics), transcription of genetics, genetic information from DNA to messenger RNA, by binding t ...
NAFC3 NAD is also consumed by different NAD+-consuming enzymes, such as
CD38 CD38 (cluster of differentiation 38), also known as cyclic ADP ribose hydrolase, is a glycoprotein found on the surface of many immune cells (white blood cells), including CD4+, CD8+, B lymphocytes and natural killer cells. CD38 also functions in ...
, CD157, PARPs and the NAD-dependent deacetylases (
sirtuin Sirtuins are a family of signaling proteins involved in metabolic regulation. They are ancient in animal evolution and appear to possess a highly conserved structure throughout all kingdoms of life. Chemically, sirtuins are a class of proteins ...
s, such as
Sir2 Sirtuin 1, also known as NAD-dependent deacetylase sirtuin-1, is a protein that in humans is encoded by the ''SIRT1'' gene. SIRT1 stands for sirtuin (silent mating type information regulation 2 homolog) 1 ('' S. cerevisiae''), referring to the f ...
.). These enzymes act by transferring an
acetyl In organic chemistry, an acetyl group is a functional group denoted by the chemical formula and the structure . It is sometimes represented by the symbol Ac (not to be confused with the element actinium). In IUPAC nomenclature, an acetyl grou ...
group from their substrate protein to the ADP-ribose moiety of NAD; this cleaves the coenzyme and releases nicotinamide and O-acetyl-ADP-ribose. The sirtuins mainly seem to be involved in regulating transcription through deacetylating histones and altering
nucleosome A nucleosome is the basic structural unit of DNA packaging in eukaryotes. The structure of a nucleosome consists of a segment of DNA wound around eight histone, histone proteins and resembles thread wrapped around a bobbin, spool. The nucleosome ...
structure. However, non-histone proteins can be deacetylated by sirtuins as well. These activities of sirtuins are particularly interesting because of their importance in the regulation of
aging Ageing (or aging in American English) is the process of becoming Old age, older until death. The term refers mainly to humans, many other animals, and fungi; whereas for example, bacteria, perennial plants and some simple animals are potentiall ...
. Other NAD-dependent enzymes include bacterial
DNA ligase DNA ligase is a type of enzyme that facilitates the joining of DNA strands together by catalyzing the formation of a phosphodiester bond. It plays a role in repairing single-strand breaks in duplex DNA in living organisms, but some forms (such ...
s, which join two DNA ends by using NAD as a substrate to donate an
adenosine monophosphate Adenosine monophosphate (AMP), also known as 5'-adenylic acid, is a nucleotide. AMP consists of a phosphate group, the sugar ribose, and the nucleobase adenine. It is an ester of phosphoric acid and the nucleoside adenosine. As a substituent it t ...
(AMP) moiety to the 5' phosphate of one DNA end. This intermediate is then attacked by the 3' hydroxyl group of the other DNA end, forming a new
phosphodiester bond In chemistry, a phosphodiester bond occurs when exactly two of the hydroxyl groups () in phosphoric acid react with hydroxyl groups on other molecules to form two ester bonds. The "bond" involves this linkage . Discussion of phosphodiesters is d ...
. This contrasts with
eukaryotic The eukaryotes ( ) constitute the Domain (biology), domain of Eukaryota or Eukarya, organisms whose Cell (biology), cells have a membrane-bound cell nucleus, nucleus. All animals, plants, Fungus, fungi, seaweeds, and many unicellular organisms ...
DNA ligases, which use ATP to form the DNA-AMP intermediate. Li et al. have found that NAD directly regulates protein-protein interactions. They also show that one of the causes of age-related decline in DNA repair may be increased binding of the protein
DBC1 Deleted in bladder cancer protein 1 is a protein that in humans is encoded by the ''DBC1'' gene. This gene is located within chromosome 9 (9q32-33), a chromosomal region that frequently shows loss of heterozygosity in transitional cell carcinoma ...
(Deleted in Breast Cancer 1) to
PARP1 Poly DP-ribosepolymerase 1 (PARP-1) also known as NAD+ ADP-ribosyltransferase 1 or poly DP-ribosesynthase 1 is an enzyme that in humans is encoded by the ''PARP1'' gene. It is the most abundant of the PARP family of enzymes, accounting for 90% o ...
(poly DP–ribosepolymerase 1) as NAD levels decline during aging. The decline in cellular concentrations of NAD during aging likely contributes to the
aging Ageing (or aging in American English) is the process of becoming Old age, older until death. The term refers mainly to humans, many other animals, and fungi; whereas for example, bacteria, perennial plants and some simple animals are potentiall ...
process and to the
pathogenesis In pathology, pathogenesis is the process by which a disease or disorder develops. It can include factors which contribute not only to the onset of the disease or disorder, but also to its progression and maintenance. The word comes . Descript ...
of the chronic diseases of aging. Thus, the modulation of NAD may protect against cancer, radiation, and aging.


Extracellular actions of NAD+

In recent years, NAD+ has also been recognized as an
extracellular This glossary of biology terms is a list of definitions of fundamental terms and concepts used in biology, the study of life and of living organisms. It is intended as introductory material for novices; for more specific and technical definitions ...
signaling molecule involved in cell-to-cell communication. NAD+ is released from
neuron A neuron (American English), neurone (British English), or nerve cell, is an membrane potential#Cell excitability, excitable cell (biology), cell that fires electric signals called action potentials across a neural network (biology), neural net ...
s in
blood vessel Blood vessels are the tubular structures of a circulatory system that transport blood throughout many Animal, animals’ bodies. Blood vessels transport blood cells, nutrients, and oxygen to most of the Tissue (biology), tissues of a Body (bi ...
s,
urinary bladder The bladder () is a hollow organ in humans and other vertebrates that stores urine from the Kidney (vertebrates), kidneys. In placental mammals, urine enters the bladder via the ureters and exits via the urethra during urination. In humans, the ...
,
large intestine The large intestine, also known as the large bowel, is the last part of the gastrointestinal tract and of the Digestion, digestive system in tetrapods. Water is absorbed here and the remaining waste material is stored in the rectum as feces befor ...
, from neurosecretory cells, and from brain
synaptosome A synaptosome is an isolated synaptic terminal from a neuron. Synaptosomes are obtained by mild homogenization of nervous tissue under isotonic conditions and subsequent fractionation using differential and density gradient centrifugation. Liquid ...
s, and is proposed to be a novel
neurotransmitter A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a Chemical synapse, synapse. The cell receiving the signal, or target cell, may be another neuron, but could also be a gland or muscle cell. Neurotra ...
that transmits information from
nerve A nerve is an enclosed, cable-like bundle of nerve fibers (called axons). Nerves have historically been considered the basic units of the peripheral nervous system. A nerve provides a common pathway for the Electrochemistry, electrochemical nerv ...
s to effector cells in
smooth muscle Smooth muscle is one of the three major types of vertebrate muscle tissue, the others being skeletal and cardiac muscle. It can also be found in invertebrates and is controlled by the autonomic nervous system. It is non- striated, so-called bec ...
organs. In plants, the extracellular nicotinamide adenine dinucleotide induces resistance to pathogen infection and the first extracellular NAD receptor has been identified. Further studies are needed to determine the underlying mechanisms of its extracellular actions and their importance for human health and life processes in other organisms.


Clinical significance

The enzymes that make and use NAD and NADH are important in both
pharmacology Pharmacology is the science of drugs and medications, including a substance's origin, composition, pharmacokinetics, pharmacodynamics, therapeutic use, and toxicology. More specifically, it is the study of the interactions that occur betwee ...
and the research into future treatments for disease.
Drug design Drug design, often referred to as rational drug design or simply rational design, is the invention, inventive process of finding new medications based on the knowledge of a biological target. The drug is most commonly an organic compound, organi ...
and drug development exploits NAD in three ways: as a direct target of drugs, by designing
enzyme inhibitor An enzyme inhibitor is a molecule that binds to an enzyme and blocks its Enzyme activity, activity. Enzymes are proteins that speed up chemical reactions necessary for life, in which Substrate (biochemistry), substrate molecules are converted ...
s or activators based on its structure that change the activity of NAD-dependent enzymes, and by trying to inhibit NAD biosynthesis. Because cancer cells utilize increased
glycolysis Glycolysis is the metabolic pathway that converts glucose () into pyruvic acid, pyruvate and, in most organisms, occurs in the liquid part of cells (the cytosol). The Thermodynamic free energy, free energy released in this process is used to form ...
, and because NAD enhances glycolysis, nicotinamide phosphoribosyltransferase (NAD salvage pathway) is often amplified in cancer cells. It has been studied for its potential use in the therapy of
neurodegenerative disease A neurodegenerative disease is caused by the progressive loss of neurons, in the process known as neurodegeneration. Neuronal damage may also ultimately result in their death. Neurodegenerative diseases include amyotrophic lateral sclerosis, mul ...
s such as
Alzheimer's Alzheimer's disease (AD) is a neurodegenerative disease and the cause of 60–70% of cases of dementia. The most common early symptom is difficulty in remembering recent events. As the disease advances, symptoms can include problems wit ...
and
Parkinson's disease Parkinson's disease (PD), or simply Parkinson's, is a neurodegenerative disease primarily of the central nervous system, affecting both motor system, motor and non-motor systems. Symptoms typically develop gradually and non-motor issues become ...
as well as
multiple sclerosis Multiple sclerosis (MS) is an autoimmune disease resulting in damage to myelinthe insulating covers of nerve cellsin the brain and spinal cord. As a demyelinating disease, MS disrupts the nervous system's ability to Action potential, transmit ...
. A placebo-controlled clinical trial of NADH (which excluded NADH precursors) in people with Parkinson's failed to show any effect. NAD is also a direct
target Target may refer to: Warfare and shooting * Shooting target, used in marksmanship training and various shooting sports ** Bullseye (target), the goal one for which one aims in many of these sports ** Aiming point, in field artille ...
of the drug
isoniazid Isoniazid, also known as isonicotinic acid hydrazide (INH), is an antibiotic used for the treatment of tuberculosis. For active tuberculosis, it is often used together with rifampicin, pyrazinamide, and either streptomycin or ethambutol. F ...
, which is used in the treatment of
tuberculosis Tuberculosis (TB), also known colloquially as the "white death", or historically as consumption, is a contagious disease usually caused by ''Mycobacterium tuberculosis'' (MTB) bacteria. Tuberculosis generally affects the lungs, but it can al ...
, an infection caused by ''
Mycobacterium tuberculosis ''Mycobacterium tuberculosis'' (M. tb), also known as Koch's bacillus, is a species of pathogenic bacteria in the family Mycobacteriaceae and the causative agent of tuberculosis. First discovered in 1882 by Robert Koch, ''M. tuberculosis'' ha ...
''. Isoniazid is a
prodrug A prodrug is a pharmacologically inactive medication or compound that, after intake, is metabolized (i.e., converted within the body) into a pharmacologically active drug. Instead of administering a drug directly, a corresponding prodrug can be ...
and once it has entered the bacteria, it is activated by a
peroxidase Peroxidases or peroxide reductases ( EC numberbr>1.11.1.x are a large group of enzymes which play a role in various biological processes. They are named after the fact that they commonly break up peroxides, and should not be confused with other ...
enzyme, which oxidizes the compound into a
free radical A daughter category of ''Ageing'', this category deals only with the biological aspects of ageing. Ageing Biogerontology Biological processes Causes of death Cellular processes Gerontology Life extension Metabolic disorders Metabolism ...
form. This radical then reacts with NADH, to produce adducts that are very potent inhibitors of the enzymes enoyl-acyl carrier protein reductase, and
dihydrofolate reductase Dihydrofolate reductase, or DHFR, is an enzyme that reduces dihydrofolic acid to tetrahydrofolic acid, using NADPH as an electron donor, which can be converted to the kinds of tetrahydrofolate cofactors used in one-carbon transfer chemistry. ...
. Since many oxidoreductases use NAD and NADH as substrates, and bind them using a highly conserved structural motif, the idea that inhibitors based on NAD could be specific to one enzyme is surprising. However, this can be possible: for example, inhibitors based on the compounds
mycophenolic acid Mycophenolic acid is an immunosuppressant medication used to prevent rejection following organ transplantation and to treat autoimmune conditions such as Crohn's disease and lupus. Specifically it is used following kidney, heart, and live ...
and tiazofurin inhibit
IMP dehydrogenase IMP or imp may refer to: * Imp, a fantasy creature Arts and entertainment Music * IMP (band) a Japanese boy band Fictional characters * Imp (She-Ra), a character in ''She-Ra: Princess of Power'' * Imp a character in '' Artemis Fowl: The L ...
at the NAD binding site. Because of the importance of this enzyme in
purine metabolism Purine metabolism refers to the metabolic pathways to synthesize and break down purines that are present in many organisms. Biosynthesis Purines are biologically synthesized as nucleotides and in particular as ribotides, i.e. bases attached to r ...
, these compounds may be useful as anti-cancer, anti-viral, or
immunosuppressive drug Immunosuppressive drugs, also known as immunosuppressive agents, immunosuppressants and antirejection medications, are drugs that inhibit or prevent the activity of the immune system. Classification Immunosuppressive drugs can be classifie ...
s. Other drugs are not enzyme inhibitors, but instead activate enzymes involved in NAD metabolism.
Sirtuin Sirtuins are a family of signaling proteins involved in metabolic regulation. They are ancient in animal evolution and appear to possess a highly conserved structure throughout all kingdoms of life. Chemically, sirtuins are a class of proteins ...
s are a particularly interesting target for such drugs, since activation of these NAD-dependent deacetylases extends lifespan in some animal models. Compounds such as
resveratrol Resveratrol (3,5,4′-trihydroxy-''trans''-stilbene) is a stilbenoid, a type of natural phenol or polyphenol and a phytoalexin produced by several plants in response to injury or when the plant is under attack by pathogens, such as bacterium, ba ...
increase the activity of these enzymes, which may be important in their ability to delay aging in both vertebrate, and invertebrate
model organism A model organism is a non-human species that is extensively studied to understand particular biological phenomena, with the expectation that discoveries made in the model organism will provide insight into the workings of other organisms. Mo ...
s. In one experiment, mice given NAD for one week had improved nuclear-mitochrondrial communication. Because of the differences in the
metabolic pathway In biochemistry, a metabolic pathway is a linked series of chemical reactions occurring within a cell (biology), cell. The reactants, products, and Metabolic intermediate, intermediates of an enzymatic reaction are known as metabolites, which are ...
s of NAD biosynthesis between organisms, such as between bacteria and humans, this area of metabolism is a promising area for the development of new
antibiotic An antibiotic is a type of antimicrobial substance active against bacteria. It is the most important type of antibacterial agent for fighting pathogenic bacteria, bacterial infections, and antibiotic medications are widely used in the therapy ...
s. For example, the enzyme nicotinamidase, which converts nicotinamide to nicotinic acid, is a target for drug design, as this enzyme is absent in humans but present in yeast and bacteria. In bacteriology, NAD, sometimes referred to factor V, is used as a supplement to culture media for some fastidious bacteria. High-cost unlicensed infusions of NAD+ have been claimed in the UK to be "clinically proven" and "effective" treatment for
alcoholism Alcoholism is the continued drinking of alcohol despite it causing problems. Some definitions require evidence of dependence and withdrawal. Problematic use of alcohol has been mentioned in the earliest historical records. The World He ...
and
drug abuse Substance misuse, also known as drug misuse or, in older vernacular, substance abuse, is the use of a drug in amounts or by methods that are harmful to the individual or others. It is a form of substance-related disorder, differing definitions ...
. NAD+ is not approved or licensed for medical use in the UK; there are likely breaches of advertising and medicines rules, and no proof that treatments work. Medical experts say "It's complete nonsense" ... "It's untested and unproven. We don't know anything about its efficacy or long-term safety". A November 2024 study, cited 700 times, claiming that NAD+ levels in
lab rat Laboratory rats or lab rats are strain (biology), strains of the rat subspecies ''Rattus norvegicus domestica'' (Domestic Norwegian rat) which are bred and kept for scientific research. While Animal testing on rodents, less commonly used for re ...
s decreased with age was withdrawn after images were found to have been manipulated, and underlying data was not provided to the publishers on request.


History

The coenzyme NAD was first discovered by the British biochemists
Arthur Harden Sir Arthur Harden, FRS (12 October 1865 – 17 June 1940) was a British biochemist. He shared the Nobel Prize in Chemistry in 1929 with Hans Karl August Simon von Euler-Chelpin for their investigations into the fermentation of sugar and ferme ...
and William John Young in 1906. They noticed that adding boiled and filtered
yeast Yeasts are eukaryotic, single-celled microorganisms classified as members of the fungus kingdom (biology), kingdom. The first yeast originated hundreds of millions of years ago, and at least 1,500 species are currently recognized. They are est ...
extract greatly accelerated
alcoholic fermentation Ethanol fermentation, also called alcoholic fermentation, is a biological process which converts sugars such as glucose, fructose, and sucrose into cellular energy, producing ethanol and carbon dioxide as by-products. Because yeasts perform this ...
in unboiled yeast extracts. They called the unidentified factor responsible for this effect a ''coferment''. Through a long and difficult purification from yeast extracts, this heat-stable factor was identified as a
nucleotide Nucleotides are Organic compound, organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both o ...
sugar phosphate by
Hans von Euler-Chelpin Hans Karl August Simon Euler-Chelpin, since 28 July 1884 von Euler-Chelpin (15 February 1873 – 6 November 1964), was a German-born Swedish biochemist. He won the Nobel Prize in Chemistry in 1929 with Arthur Harden for their investigations on ...
. In 1936, the German scientist
Otto Heinrich Warburg Otto Heinrich Warburg (, ; 8 October 1883 – 1 August 1970) was a German physiologist, medical doctor, and Nobel laureate. He served as an officer in the elite Uhlan (cavalry regiment) during the First World War, and was awarded the Iron Cross ...
showed the function of the nucleotide coenzyme in hydride transfer and identified the nicotinamide portion as the site of redox reactions. Vitamin precursors of NAD were first identified in 1938, when Conrad Elvehjem showed that liver has an "anti-black tongue" activity in the form of nicotinamide. Then, in 1939, he provided the first strong evidence that
nicotinic acid Nicotinic acid, or niacin, is an organic compound and a vitamer of vitamin B3, an essential human nutrient. It is produced by plants and animals from the amino acid tryptophan. Nicotinic acid is also a prescription medication. Amounts f ...
is used to synthesize NAD. In the early 1940s,
Arthur Kornberg Arthur Kornberg (March 3, 1918 – October 26, 2007) was an American biochemist who won the Nobel Prize in Physiology or Medicine in 1959 for the discovery of "the mechanisms in the biological synthesis of ribonucleic acid and deoxyribonucleic a ...
was the first to detect an enzyme in the biosynthetic pathway. In 1949, the American biochemists Morris Friedkin and
Albert L. Lehninger Albert Lester Lehninger (February 17, 1917 – March 4, 1986) was an American chemist in the field of Biological thermodynamics, bioenergetics. He made fundamental contributions to the current understanding of metabolism at a molecular level. In ...
proved that NADH linked metabolic pathways such as the
citric acid cycle The citric acid cycle—also known as the Krebs cycle, Szent–Györgyi–Krebs cycle, or TCA cycle (tricarboxylic acid cycle)—is a series of chemical reaction, biochemical reactions that release the energy stored in nutrients through acetyl-Co ...
with the synthesis of ATP in oxidative phosphorylation. In 1958, Jack Preiss and Philip Handler discovered the intermediates and enzymes involved in the biosynthesis of NAD; salvage synthesis from nicotinic acid is termed the Preiss-Handler pathway. In 2004, Charles Brenner and co-workers uncovered the
nicotinamide riboside Nicotinamide riboside (NR, SR647) is a pyridine-nucleoside and a form of vitamin B3. It functions as a precursor to nicotinamide adenine dinucleotide, or NAD+, through a two-step and a three-step pathway. Chemistry While the molecular weight of ...
kinase pathway to NAD. The non-redox roles of NAD(P) were discovered later. The first to be identified was the use of NAD as the ADP-ribose donor in ADP-ribosylation reactions, observed in the early 1960s. Studies in the 1980s and 1990s revealed the activities of NAD and NADP metabolites in cell signaling – such as the action of
cyclic ADP-ribose Cyclic ADP-ribose, frequently abbreviated as cADPR, is a cyclic adenine nucleotide (like cAMP) with two phosphate groups present on 5' OH of the adenosine (like ADP), further connected to another ribose at the 5' position, which, in turn, closes ...
, which was discovered in 1987. The metabolism of NAD remained an area of intense research into the 21st century, with interest heightened after the discovery of the NAD-dependent protein deacetylases called
sirtuin Sirtuins are a family of signaling proteins involved in metabolic regulation. They are ancient in animal evolution and appear to possess a highly conserved structure throughout all kingdoms of life. Chemically, sirtuins are a class of proteins ...
s in 2000, by Shin-ichiro Imai and coworkers in the laboratory of Leonard P. Guarente. In 2009 Imai proposed the "NAD World" hypothesis that key regulators of aging and longevity in mammals are sirtuin 1 and the primary NAD synthesizing enzyme
nicotinamide phosphoribosyltransferase Nicotinamide phosphoribosyltransferase (NAmPRTase or NAMPT), formerly known as pre-B-cell colony-enhancing factor 1 (PBEF1) or visfatin for its extracellular form (eNAMPT), is an enzyme that in humans is encoded by the ''NAMPT'' gene. The intra ...
(NAMPT). In 2016 Imai expanded his hypothesis to "NAD World 2.0", which postulates that extracellular NAMPT from
adipose tissue Adipose tissue (also known as body fat or simply fat) is a loose connective tissue composed mostly of adipocytes. It also contains the stromal vascular fraction (SVF) of cells including preadipocytes, fibroblasts, Blood vessel, vascular endothel ...
maintains NAD in the
hypothalamus The hypothalamus (: hypothalami; ) is a small part of the vertebrate brain that contains a number of nucleus (neuroanatomy), nuclei with a variety of functions. One of the most important functions is to link the nervous system to the endocrin ...
(the control center) in conjunction with
myokine A myokine is one of several hundred cytokines or other small proteins (~5–20 kDa) and proteoglycan peptides that are produced and released by skeletal muscle cells (muscle fibers) in response to muscular contractions. They have autocrine, para ...
s from
skeletal muscle Skeletal muscle (commonly referred to as muscle) is one of the three types of vertebrate muscle tissue, the others being cardiac muscle and smooth muscle. They are part of the somatic nervous system, voluntary muscular system and typically are a ...
cells. In 2018, Napa Therapeutics was formed to develop drugs against a novel aging-related target based on the research in NAD metabolism conducted in the lab of Eric Verdin.


See also

*
Enzyme catalysis Enzyme catalysis is the increase in the rate of a process by an "enzyme", a biological molecule. Most enzymes are proteins, and most such processes are chemical reactions. Within the enzyme, generally catalysis occurs at a localized site, calle ...
* List of oxidoreductases


References


Further reading


Function

* * * * *


History

*, A history of early enzymology. *, a textbook from the 19th century.


External links


NAD bound to proteins
in the
Protein Data Bank The Protein Data Bank (PDB) is a database for the three-dimensional structural data of large biological molecules such as proteins and nucleic acids, which is overseen by the Worldwide Protein Data Bank (wwPDB). This structural data is obtained a ...

NAD Animation
(Flash Required)
β-Nicotinamide adenine dinucleotide (NAD, oxidized)
an
NADH (reduced)
Chemical data sheet from
Sigma-Aldrich Sigma-Aldrich (formally MilliporeSigma) is an American chemical, life science, and biotechnology company owned by the multinational chemical conglomerate Merck Group. Sigma-Aldrich was created in 1975 by the merger of Sigma Chemical Company and ...

NADNADH
an
NAD synthesis pathway
at the
MetaCyc The MetaCyc database is one of the largest metabolic pathways and enzymes databases currently available. The data in the database is manually curated from the scientific literature, and covers all domains of life. MetaCyc has extensive information ...
database
List of oxidoreductases
at the
SWISS-PROT UniProt is a freely accessible database of protein sequence and functional information, many entries being derived from genome sequencing projects. It contains a large amount of information about the biological function of proteins derived from ...
database
NAD+

NAD+ The Molecule of Youth
{{Enzyme cofactors Anti-aging substances Cellular respiration Coenzymes Nucleotides Photosynthesis Pyridinium compounds